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High-level constructs for parallelism such as the fork-join model and parallel loops can greatly aid writing

parallel code by allowing programmers to express parallelism at a high level of abstraction without worrying

about details like thread creation, scheduling, and synchronization. The problem is that parallelism is not

free: parallel code incurs overheads to manage such tasks. As a result, high-level parallel code does not

typically deliver the performance expected of a parallel program, requiring programmers to optimize their

code manually to control the overheads of managing threads. Such optimizations demand a great degree of

effort and experience, requiring programmers to reason about architectural constant factors hidden behind

layers of software, and result in over-engineered code that is difficult to reason about. Recent advances in

parallelism management show that it is feasible to manage parallelism fully automatically while guaranteeing

reasonably high performance. Prior work on parallelism management, however, assumes a binary fork-join

model of parallelism and does not provide direct support for the dominant form of parallelism: parallel loops.

In this paper, we propose techniques for parallelism management of parallel loops by bringing together

language design, compilation, and implementation. Our approach starts with an SSA-based intermediate

representation (IR) that includes a pair of primitives for managing parallelism. These primitives, called spork
and spoin, enable code that executes sequentially by default but can “go parallel” when the runtime environment

favors concurrent execution. We formalize the semantics of these primitives and establish key soundness

theorems using the Lean theorem prover. We present techniques for encoding both high-level parallel loops

and fork-join parallel code in the IR using the spork and spoin primitives. Then, we show how to couple

these primitives with heartbeat scheduling to determine when they should go parallel and when they should

stay sequential to guarantee efficiency. We implement our techniques by extending the MPL compiler for

Parallel ML and conduct an experimental evaluation. The experiments show that our approach performs well

in practice, delivering an average of <70% overhead on a single core vs. sequential and an average of 28x

speedup on 80 cores, while requiring no human effort for performance optimization of parallelism overheads.

CCS Concepts: • Software and its engineering→ Compilers; Parallel programming languages; Formal
language definitions.

Additional Key Words and Phrases: parallel loops, parallelism management, granularity control

1 Introduction
In principle, it is not difficult to write parallel programs using high-level parallel constructs like

parallel loops. But writing performant parallel programs, which compete with sequential code

on small numbers of cores while also scaling to larger numbers, remains a major challenge. For

example, just as we could implement a simple sequential matrix multiplication with three nested

loops, we could implement a parallel matrix multiplication with three nested “parallel for” loops.

Ideally, the parallel implementation would perform no worse than the sequential implementation

and would offer significant speedups. In reality the parallel implementation will be significantly

slower than its sequential counterpart (as much as an order of magnitude slower), and will struggle

to catch up, even as we use more cores.
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Why would such a simple parallel program perform so poorly? The problem is that parallelism

is not free: parallel code incurs overheads to spawn, schedule, and synchronize parallel tasks. For

example, every iteration of a parallel loop can spawn a task to execute the body of the loop in parallel.

Such a spawn operation requires thousands of cycles even with the fastest implementations on

modern hardware [Ghosh et al. 2020a]. Yet, the body of a loop can be relatively tiny, even taking as

few as a couple dozen cycles to complete (as in the parallel matrix multiplication example), causing

the overhead of the spawn operations—rather than the actual matrix-multiplication work—to

dominate execution time.

Today, we expect the programmer to control the cost-benefit ratio of parallelism by optimizing

parallel loops via coarsening. Specifically, the programmer splits the loop into chunks and spawns

only one task per chunk, thereby amortizing the cumulative overhead of parallelism [Acar et al.

2018; Tzannes et al. 2014; Westrick et al. 2024]. Such optimization requires great care, because if

the chunks are too coarse, then they will reduce parallelism and harm scalability; if the chunks are

too fine, then the overheads will be large. But what exactly are “too coarse” and “too fine”? This

question is difficult, if not impossible, to answer because it depends on dynamic data, especially

for high-level languages with generic or polymorphic data types. For example, the arguments to

a parallel matrix multiplication function can be matrices of bits, floating point numbers, or an

algebraic data structure; matrices may vary in size along each dimension and potentially from

dense to sparse, or anything in between. All of these factors impact performance, but they are

not statically known. Making matters worse, the architecture itself and even the software stack

also impact performance. Thus, even if the programmer manages to coarsen perfectly, they end up

overfitting the code to the architecture, software stack, and inputs considered, jeopardizing the

portability of the program (e.g. [Acar et al. 2018; Tzannes et al. 2014; Westrick et al. 2024]).

Motivated by the challenges of manual performance optimization, researchers have sought

automation. Prior work on heartbeat scheduling presented a scheduling technique that can provably

efficiently amortize the overheads of parallelism [Acar et al. 2018; Rainey et al. 2021; Su et al.

2024]. Focusing on binary fork-join model of parallelism, more recent work [Westrick et al. 2024]

has introduced the idea of “(automatic) parallelism management” by combining compiler and

runtime techniques with heartbeat scheduling to manage parallelism fully automatically. Parallelism

management allows the programmer to express all potential for parallelism without worrying

about performance and relies on the programming language and the compiler suite to decide what

and when to parallelize. Parallelism management shows encouraging results but is limited by a

fundamental assumption: it considers only a binary fork-join model and does not provide direct

support for the dominant form of parallelism: loops. Parallel loops may be encoded with binary

fork-join parallelism but such an encoding introduces significant overheads and blocks a variety of

loop-specific compiler optimizations.

In this paper we present Spork IR, an intermediate representation that enables parallelism man-

agement for key primitives including parallel loops, parallel reductions, and fork-join parallelism.

Spork IR enables compiling parallel loops and reductions into a form which executes like a se-

quential, iterative loop by default, but can be parallelized at a moment’s notice. Spork IR makes no

restrictions on how loops may be used, and allows arbitrary nesting (including dynamically via

function calls). To ensure efficiency without restricting generality, the IR includes two low-level

control-flow constructs, called spork (sequential or parallel fork) and spoin (sequential or parallel

join). At a high level, spork marks points in a loop that may “go parallel” and symetrically, spoin

marks the potential synchronization needed for the spork. From an operational perspective, each

spork registers an alternative code path for a parallel task implicitly on the call stack, making its

sequential execution cost essentially zero. If the runtime decides to “go parallel”, it does so by
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creating a proper task from the implicit representation. Each spork has a matching spoin that either

continues sequentially or performs a task synchronization, decided automatically by the runtime.

The precise semantics of spork and spoin are subtle, and an efficient lowering to assembly code

hinges on their use according to key invariants. We therefore formalize the semantics of spork and

spoin in the context of an SSA-based IR, defining their operational semantics and a type system

that enforces safety. We prove key type safety theorems in the Lean theorem prover.

To support performant parallel loops, we encode parallel loops by wrapping their body with

a spork-spoin pair, registering a parallel task to complete the remainder of the iterations, while

also executing sequentially when the runtime deems parallelism unnecessary. This allows the

runtime to parallelize the loop at any moment by dynamically choosing to actually spawn the

registered task. To guarantee that we can amortize the cost of the spawn operations, we use

heartbeat scheduling [Acar et al. 2018; Rainey et al. 2021] to decide dynamically which spork

primitives should go parallel and which should remain sequential.

We demonstrate that Spork IR is practical by implementing its formal semantics in the MPL

compiler for the Parallel ML language. The implementation incorporates Spork IR and adapts

existing optimizations and compilation passes appropriately. In addition to supporting many

existing loop-specific optimizations, our implementation of spork (and spoin) allows for function

inlining, a key property for efficient nested and/or tight loops. In addition to parallel for loops,

Spork IR is capable of encoding parallel reductions and fork-join parallelism.

We evaluate the Spork IR approach to parallelism management by considering over a dozen

benchmarks from the Parallel ML Benchmark Suite [Arora et al. 2021, 2023; Westrick et al. 2024].

These benchmarks cover a variety of problem domains, including graph analysis, computational

geometry, sparse linear algebra, numerical algorithms, and text analysis, and include highly irregular

and challenging instances of parallelism.

Our experiments show that managed parallel programs incur less than 70% overhead compared

to their sequential counterparts while delivering good parallel speedups (an average of 28x on

an 80-core machine). Notably, parallel programs fully managed by Spork IR, which require no

manual optimizations for controlling parallelism overheads, are less than 32% slower on average

than manually optimized parallel code for all core counts. These results show that parallelism

management can enable programs written with high-level parallel constructs to achieve fast

performance while managing thread creation, scheduling, and synchronization fully automatically.

The specific contributions of the paper include the following:

• the design of Spork IR with spork and spoin, control-flow primitives enabling code to

perform well both sequentially and in parallel,

• a formalization of the syntax, semantics, and type system of Spork IR, along with progress

and preservation theorems proven in the Lean theorem prover,

• a compilation strategy for expressing parallel loops and fork-join parallelism using spork

and spoin, including important optimizations,

• an end-to-end implementation in the MPL compiler and runtime system,

• and an empirical evaluation with over a dozen benchmarks written with high-level paral-

lelism primitives, demonstrating that Spork IR is capable of guaranteeing low overhead and

high scalability without requiring manual optimizations to control parallelism overheads.

2 Spork IR: An Intermediate Representation for Parallelism Management
We introduce Spork IR, an intermediate representation language suitable for efficient and automatic

parallelism management at runtime. Spork IR is derived from static single assignment form (SSA),

extending it with two additional control flow primitives for managing parallelism: spork and spoin.



4 McDonald et al.

Program 𝑃 ::= 𝐹

Function 𝐹,𝐺 ::= fun 𝑓 (𝑥){𝐵}
Basic block 𝐵 ::= block 𝑏 (𝑥){𝐶}
Block code 𝐶 ::= 𝑥 ← 𝑒;𝐶 | 𝑇
Expression 𝑒 ::=𝑚 | −𝑚 | 𝑚 + 𝑛 | 𝑚 < 𝑛 | ...
Transfer 𝑇 ::= goto 𝑏next (𝑥) | if(𝑒, 𝑏then, 𝑏else) | call 𝑓 (𝑥) ⊲ 𝑏ret | return(𝑥)

| spork(𝑏body ∥𝑔spwn (𝑥)) | spoin(𝑏unpr, 𝑏prom)

Atom 𝑚,𝑛 ::= 𝜈 | 𝑥
Value 𝜈 ∈ Z
Temporary 𝑥,𝑦

Function name 𝑓 , 𝑔

Block label 𝑏

Fig. 1. Syntax of Spork IR, with the new transfers highlighted: spork and spoin.

In the rest of this section, we define the syntax and semantics of Spork IR, describe its type system,

and prove its type safety.

Note that Spork IR specifically aims to facilitate the compilation of efficient, automatically

managed parallel loops, a goal that informed many of our design choices. The intermediate rep-

resentation itself enforces several constraints which are not strictly necessary for a coherent

semantics, but which prove absolutely crucial later on for lowering to efficient assembly code.

2.1 Syntax
Figure 1 defines the syntax of Spork IR. A program 𝑃 is a list of first-order functions, one named

main (we denote lists with a bar, e.g. 𝐹 ). Each function has a name, list of parameters, and a list of

basic blocks, including one marked as the function entry.

A basic block marks a sequence of straight-line code with no control flow except at the very end:

it consists of a label, a list of parameters, and a list of assignments terminated by a control flow

transfer. In addition to functions, basic blocks have parameters because static single assignment

form requires every variable (hereafter called temporary) be assigned in exactly one place in the

program, yet sometimes multiple source blocks need to send data to a shared target block (some

SSA IRs use a 𝜙 function for this same goal). Assignments (e.g., 𝑥 ← 𝑦 + 𝑧) assign the value of an

expression to a temporary, and transfers enable control flow across basic blocks (goto, if), functions

(call, return), and in Spork IR, potentially across threads (spork, spoin).

Spork IR extends SSA by introducing the two new transfers highlighted in Figure 1. The

spork(𝑏body ∥𝑔spwn (𝑥)) (“sequential/parallel fork”) transfer behaves as a goto 𝑏body (), but it addi-
tionally opens a scope in which 𝑔spwn (𝑥) is potential work for a new thread, should the program

choose during execution to spawn a thread while inside the scope. The spoin(𝑏unpr, 𝑏prom) transfer
closes this scope, and performs a conditional jump: 𝑏unpr (“unpromoted”) if the program never

spawned a thread executing𝑔spwn (𝑥), and𝑏prom (“promoted”) if it did. In the latter case, the spawned

child thread terminates when it reaches a return(𝑥) from the last stack frame in its call stack,

Thread pool R ::= T | R𝑝 ≻ R𝑐
Thread state T ::= K ⋄𝐶
Call stack K ::= 𝑘

Stack frame 𝑘 ::= ⟨𝑓 , 𝜌,X, 𝑏ret?⟩
Spawn deque 𝜌 ::= 𝜋 : 𝜐

Spawn call 𝜋,𝜐 ::= 𝑔spwn (𝑥)
Value map X,Y ∈ (temp) ⇀ (value)

Fig. 2. Definitions for Spork IR

operational semantics

which sends the values of 𝑥 back to the parent

thread and exits. Then, when the parent thread reaches

spoin(𝑏unpr, 𝑏prom), it synchronizes with the child thread

and jumps to 𝑏prom, passing it the values of 𝑥 as argu-

ments.

2.2 Operational Semantics
Formalizing this notion, we present definitions for the

operational semantics of Spork IR in Figure 2 and the
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R𝑝 ↦→ R′𝑝
R𝑝 ≻ R𝑐 ↦→ R′𝑝 ≻ R𝑐

cong-parent

R𝑐 ↦→ R′𝑐
R𝑝 ≻ R𝑝 ↦→ R𝑝 ≻ R′𝑐

cong-child

X ⊢ 𝑒 ⇓ 𝜈
K · ⟨𝑓 , 𝜌, X⟩ ⋄ (𝑥 ← 𝑒 ) ;𝐶 ↦→ K · ⟨𝑓 , 𝜌, X[𝑥 ↩→ 𝜈 ] ⟩ ⋄ 𝐶 stmt

block 𝑏next (𝑦) {𝐶 } ∈ 𝑓

K · ⟨𝑓 , 𝜌, X⟩ ⋄ goto 𝑏next (𝑥 ) ↦→ K · ⟨𝑓 , 𝜌, X[𝑦 ↩→ X(𝑥 ) ] ⟩ ⋄ 𝐶 goto

X ⊢ 𝑒 ⇓ 𝜈 𝜈 ≠ 0 block 𝑏
then
( ) {𝐶 } ∈ 𝑓

K · ⟨𝑓 , 𝜌, X⟩ ⋄ if(𝑒,𝑏
then

, _) ↦→ K · ⟨𝑓 , 𝜌, X⟩ ⋄ 𝐶 if-then

X ⊢ 𝑒 ⇓ 0 block 𝑏
else
( ) {𝐶 } ∈ 𝑓

K · ⟨𝑓 , 𝜌, X⟩ ⋄ if(𝑒, _, 𝑏
else
) ↦→ K · ⟨𝑓 , 𝜌, X⟩ ⋄ 𝐶 if-else

fun 𝑔 (𝑦) {_} block entry( ) {𝐶 } ∈ 𝑔
K · ⟨𝑓 , 𝜌, X⟩ ⋄ call 𝑔 (𝑥 ) ⊲ 𝑏ret ↦→ K · ⟨𝑓 , 𝜌, X, 𝑏ret ⟩ · ⟨𝑔,∅, [𝑦 ↩→ X(𝑥 ) ] ⟩ ⋄ 𝐶 call

block 𝑏ret (𝑥 ) {𝐶 } ∈ 𝑓

K · ⟨𝑓 , 𝜌, X, 𝑏ret ⟩ · ⟨𝑔,∅,Y⟩ ⋄ return(𝑦) ↦→ K · ⟨𝑓 , 𝜌, X[𝑥 ↩→ Y(𝑦) ] ⟩ ⋄ 𝐶 return

block 𝑏
body
( ) {𝐶 } ∈ 𝑓

K · ⟨𝑓 , 𝜋 : 𝜐, X⟩ ⋄ spork(𝑏
body
∥𝑔spwn (𝑥 ) ) ↦→ K ·

〈
𝑓 , 𝜋 : 𝜐 ·𝑔spwn (𝑥 ), X

〉
⋄ 𝐶

spork

∀ ⟨_, _ : 𝜐, _, _⟩ ∈ K . 𝜐 = ∅ fun 𝑔 (𝑦) {_} block entry( ) {𝐶′ } ∈ 𝑔
K ·

〈
𝑓 , 𝜋 : 𝑔spwn (𝑥 ) ·𝜐, X, 𝑏ret

〉
·K′ ⋄ 𝐶 ↦→ K ·

〈
𝑓 , 𝜋 ·𝑔spwn (𝑥 ) : 𝜐, X, 𝑏ret

〉
·K′ ⋄𝐶 ≻

〈
𝑔spwn,∅, [𝑦 ↩→ X(𝑥 ) ]

〉
⋄𝐶′

promote

block 𝑏unpr ( ) {𝐶 } ∈ 𝑓

K ·
〈
𝑓 , 𝜋 : 𝜐 ·𝑔spwn (𝑥 ), X

〉
⋄ spoin(𝑏unpr, _) ↦→ K · ⟨𝑓 , 𝜋 : 𝜐, X⟩ ⋄ 𝐶

spoin-unpr

block 𝑏prom (𝑥 ) {𝐶 } ∈ 𝑓

K ·
〈
𝑓 , 𝜋 ·𝑔spwn (𝑥 ) : , X

〉
⋄spoin(_, 𝑏prom ) ≻

〈
𝑔spwn,∅,Y

〉
⋄return(𝑦) ↦→ K · ⟨𝑓 , 𝜋 : , X[𝑥 ↩→ Y(𝑦) ] ⟩ ⋄𝐶

spoin-prom

Fig. 3. Spork IR operational semantics

semantics themselves in Figure 3. We use ∅ for an empty

list (or simply omit it) and write 𝑥 ·𝑦 for the concatenation
of 𝑥 and 𝑦. A thread pool has the structure of a binary

tree, with threads for leaves and with a node R𝑝 ≻ R𝑐 denoting a fork where R𝑝 is the parent of

R𝑐 . Each thread consists of a call stack paired with the remaining code from the basic block it

is executing. A call stack is a nonempty list of stack frames, each with four components: (1) the

function 𝑓 being executed by the frame, (2) a spawn deque 𝜌 of spawn calls, one for each spork

scope we are inside (local to this stack frame, i.e., those entered while this was the current stack

frame) with the delimiter “:” separating promoted calls 𝜋 from unpromoted calls 𝜐, (3) a mapping

X that stores the value of each temporary in scope, and (4) an optional continuation block 𝑏ret for

resuming this stack frame after a return, present in all but the current stack frame.

We define the execution of Spork IR via the small-step operational semantics in Figure 3. Each

rule is of the form R ↦→ R, modifying the thread pool:

• cong-parent and cong-child allow arbitrarily stepping in parts of the thread pool

• stmt evaluates 𝑒 , associating 𝑥 with its value in the current frame’s value mapping.

• goto jumps to a new block, assigning values to its parameters from the arguments provided.

• if-then and if-else rules perform conditional jumps: 𝑏then if 𝑒 evaluates to a nonzero

value and 𝑏else otherwise.

• call saves which block to return to, pushes a new stack frame onto the call stack, and

initializes it by mapping from function parameters to the values of the arguments.

• return, conversely, pops the current stack frame and returns to the caller’s, passing the

returned value(s) as arguments to 𝑏ret.



6 McDonald et al.

• spork always jumps to 𝑏body, but additionally pushes 𝑔spwn (𝑥) to the end of the current

frame’s spawn deque, allowing it to be promoted to a thread later.

• promote may happen nondeterministically at any point while at least one frame’s spawn

deque on the call stack is nonempty. It finds the oldest unpromoted 𝑔spwn (𝑥) across all
stack frames (including the current frame), marks it as promoted, and spawns a new thread

executing that call. Importantly, this ensures spawn calls are promoted in order of

oldest to newest.

• spoin-prom happens at a spoin when its associated spork was promoted, popping its

spawn call 𝑔spwn (𝑥) from the end of the (fully promoted) spawn deque. No unpromoted

spawn calls remain, since promotions happen oldest-first and, conversely, spoin closes the

most recent spork scope. Once the child thread ends with a return(𝑦) from its last stack

frame, the original thread passes the values of 𝑦 as arguments to the 𝑏prom block.

• spoin-unpr happens at a spoin when its associated spork remained unpromoted. It closes

the spork scope by popping from the end of the spawn deque (which prevents 𝑔spwn (𝑥)
from being promoted in the future), then jumps to the 𝑏unpr block.

2.3 Type System
The type system of Spork IR requires that programs satisfy certain properties necessary for the

operational semantics and for lowering to efficient assembly code. Integers are the sole type of

values in Spork IR, and while this suffices for our purposes, extending the language to include more

types should be straightforward if desired. As a result, our typing rules are judgments of the form

𝑑 WF (“well-formed”), where 𝑑 can be a program, thread pool, or any of their constituent parts

(expression, basic block, call stack, etc.), optionally with antecedents to the left of a turnstile ⊢.
To facilitate these well-formedness rules, we first enrich the syntax definitions by adding sub-

scripted attributes to functions and basic blocks: fun𝑟 𝑓 (𝑥) is a function where all returns have

𝑟 values, and blockΓ;𝜌 𝑏 (𝑥) is a block statically nested under 𝜌 sporks and with local temporary

scope Γ. These attributes are statically inferred and have exactly one value for each function and

basic block. A subscript may be omitted when its value does not matter.

Figure 4 lists the typing rules of well-formed Spork IR programs. Broadly speaking, a well-formed

program is composed of well-formed functions, including a main function. Similarly, a well-formed

function in program 𝑃 is composed of well-formed basic blocks, one of which is named entry. A

basic block is well-formed in program 𝑃 and function 𝑓 if its code is and its arguments do not

shadow any temporaries bound elsewhere (since this is static single assignment). A rule of the

form 𝑃 ; 𝑓 ; Γ; 𝜌 ⊢ 𝐶 WFcode states that code𝐶 is well-formed in program 𝑃 and function 𝑓 so long as

every control flow path leading to this point binds at least those temporaries in Γ and always passes

through the same sequence of open sporks—those without a closing spoin—with corresponding

spawn calls 𝜌 (which we also call its spork nesting). The auxiliary 𝑓 ; Γ; 𝜌 ⊢ 𝑏 (·𝑟 ) WFcont rule

(“continuation”) stipulates that 𝑏 is a block in 𝑓 with arity 𝑟 , temporary scope Γ, and spork nesting

𝜌 . Note, these rules do not distinguish between promoted and unpromoted spawn calls since they

only consider a static program, not its dynamic execution.

These typing rules enforce a set of relatively standard invariants for an an SSA-based IR, e.g.,

temporaries are in scope everywhere they are used and function calls have the correct number of

arguments. Additionaly, they enforce that sporks and spoins come in matching pairs, with no other

control flow into, or out of, the code between. This invariant results in every basic block having

a statically inferred spork nesting. Further, functions can only return after all sporks have been

closed by a spoin, ensuring any potentially necessary synchronization has happened. In addition to

being important for the type safety of the operational semantics, these properties prove absolutely

crucial for lowering Spork IR to efficient assembly code, as they impose a static bound on the size
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∀𝐹 ∈ 𝑃 . 𝑃 ⊢ 𝐹 WFfun

funmain(){_} ∈ 𝑃
𝑃 WFprogram

∀𝐵 ∈ 𝐵. 𝑃 ; 𝑓 ⊢ 𝐵 WFblock

block𝑥 ;∅ entry(){_} ∈ 𝐵
𝑃 ⊢ fun 𝑓 (𝑥){𝐵} WFfun

𝑃 ; 𝑓 ; Γ ∪ 𝑥 ; 𝜌 ⊢ 𝐶 WFcode Γ ∩ 𝑥 = ∅
𝑃 ; 𝑓 ⊢ blockΓ;𝜌 𝑏 (𝑥){𝐶} WFblock

...

Γ ⊢ 𝑒 WFexpr

Γ ⊢ 𝑒 WFexpr 𝑃 ; 𝑓 ; Γ ∪ {𝑥}; 𝜌 ⊢ 𝐶 WFcode 𝑥 ∉ Γ

𝑃 ; 𝑓 ; Γ; 𝜌 ⊢ 𝑥 ← 𝑒;𝐶 WFcode

𝑥 ⊆ Γ 𝑓 ; Γ; 𝜌 ⊢ 𝑏next (· |𝑥 | ) WFcont

𝑃 ; 𝑓 ; Γ; 𝜌 ⊢ goto 𝑏next (𝑥) WFcode

𝑓 ; Γ; 𝜌 ⊢ 𝑏then (·0) WFcont

Γ ⊢ 𝑒 WFexpr 𝑓 ; Γ; 𝜌 ⊢ 𝑏else (·0) WFcont

𝑃 ; 𝑓 ; Γ; 𝜌 ⊢ if(𝑒, 𝑏then, 𝑏else) WFcode

𝑃 ; Γ ⊢ 𝑔(𝑥) WFcall 𝑓 ; Γ, 𝜌 ⊢ 𝑏ret (·𝑟 ) WFcont

𝑃 ; 𝑓 ; Γ; 𝜌 ⊢ call 𝑔(𝑥) ⊲ 𝑏ret WFcode

fun𝑟 𝑓 (_){_} 𝑟 = |𝑥 | 𝑥 ⊆ Γ

𝑃 ; 𝑓 ; Γ;∅ ⊢ return(𝑥) WFcode

𝑃 ; Γ ⊢ 𝑔spwn (𝑥) WFcall

𝑓 ; Γ; 𝜌 · 𝑔spwn (𝑥) ⊢ 𝑏body (·0) WFcont

𝑃 ; 𝑓 ; Γ; 𝜌 ⊢ spork(𝑏body ∥𝑔spwn (𝑥)) WFcode

𝑓 ; Γ; 𝜌 ⊢ 𝑏unpr (·0) WFcont

fun𝑟 𝑔spwn (_){_} ∈ 𝑃 𝑓 ; Γ; 𝜌 ⊢ 𝑏prom (·𝑟 ) WFcont

𝑃 ; 𝑓 ; Γ; 𝜌 · 𝑔spwn (𝑥) ⊢ spoin(𝑏unpr, 𝑏prom) WFcode

𝑥 ⊆ Γ fun 𝑓 (𝑦){_} ∈ 𝑃 |𝑥 | = |𝑦 |
𝑃 ; Γ ⊢ 𝑓 (𝑥) WFcall

blockΓ′ ;𝜌 𝑏 (𝑥){_} ∈ 𝑓 Γ′ ⊆ Γ |𝑥 | = 𝑟
𝑓 ; Γ; 𝜌 ⊢ 𝑏 (·𝑟 ) WFcont

Fig. 4. Typing rules of well-formed programs

of 𝜌 in every function and allow the compiler to know what the (local) spawn deque is for every

program point.

We also define typing rules for thread pools, formalizing what it means for a program’s execution

state to be well-formed. While the semantics of Spork IR are inherently nondeterministic, they

follow certain constraints that our typing rules for thread pools (and their constituents) capture. One

such constraint is that promotions happen in order from oldest to newest. In Section 4.3 we discuss

how this promotion order guarantees certain work- and span-efficiency bounds. A well-formed

thread pool ensures invariants such as every stack frame except the current one expects as many

arguments to be returned from its successor frame as the function that frame is executing returns.

Also, it requires that there is a child thread running each promoted spawn call. For a well-formed

program, we can derive that its initial thread pool—a leaf thread running the entry block of the

main function—is well-formed. The full typing rules for thread pools are given in Appendix A.

2.4 Formalization of Spork IR
We have encoded the syntax and semantics of Spork IR in the Lean theorem prover [Moura and

Ullrich 2021], along with our typing rules for programs and thread pools. Using this encoding, we

have proven the following theorems for Spork IR in Lean:

Theorem 2.1 (Progress). For a well-formed thread pool R, either
(1) R = ∅·⟨𝑓 ,∅,X⟩ ⋄ return(𝑥) is a final leaf thread returning from its last stack frame,
(2) R = K · ⟨𝑓 , 𝜋 ·𝑔spwn (𝑥) : ∅,X⟩ ⋄ spoin(𝑏unpr, 𝑏prom) is a blocked leaf thread awaiting the

spork’s promoted spawn call to finish,
(3) or R ↦→ R′ for some R′

Theorem 2.2 (Preservation). If R ↦→ R′ and R is well-formed, then R′ is also well-formed.
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Theorem 2.3 (Inlining). Inlining a function call preserves well-formedness.

Theorems 2.1 and 2.2 (Progress and Preservation) demonstrate the type safety of Spork IR,

guaranteeing that executing a well-formed program via the operational semantics never reaches

an ill-formed state, either terminating with a final result or continuing with another step. Due

to well-formedness, the second (blocked) case of Theorem 2.1 can only happend when R is the

parent of another thread, i.e., it is the left branch of a fork node; consequently, it is not possible of a

top-level thread pool node.

Function call inlining in Spork IR can be performed in the typical way. For example, call 𝑓 (𝑥)⊲𝑏ret
would be inlined by adding the basic blocks of 𝑓 to the current function’s, changing the call

to goto entry𝑓 (𝑥), and replacing each return(𝑦) in the newly added blocks with goto 𝑏ret (𝑦).
Theorem 2.3 (Inlining) provides a certain sense of composability, where well-formed code may be

nested inside other well-formed code and remain well-formed. This property is important in the

following section, as it guarantees our implementation of parallel loops can be arbitrarily nested.

Our Lean formalization follows the definitions outlined in this paper very closely, but with one

non-negligible difference which aids mechanization: rather than by names, our proofs refer to

temporaries by their indices in the local scope. For example, blockΓ;𝜌 𝑏 (𝑥,𝑦){𝑧 ← 𝑥 +𝑦; goto 𝑏′ (𝑧)}
for some |Γ | = 2 would instead be written block𝜌 𝑏 (4){Γ [2] + Γ [3]; goto 𝑏′ (Γ [4])}. In place of

block parameters is the number of temporaries already in scope plus the number of parameters—in

this case, 𝑏 (𝑥,𝑦) becomes 𝑏 (|Γ | + 2) = 𝑏 (4). Similarly, the assignment implicitly binds the fifth

index (counting from 0), Γ [4], instead of giving it the name 𝑧. In order to give a more accessible and

familiar presentation in this paper, we use named temporaries and an implicit local scope instead.

3 Encoding Parallelism in Spork IR
In this section, we consider an ML-like (higher-order, polymorphic, etc.) source language supporting

parallelism via several primitive higher-order functions and introduce encodings of these functions

in Spork IR. In particular, we consider:

par : (unit→ 𝛼) × (unit→ 𝛽) → 𝛼 × 𝛽
parfor : int × int × (int→ unit) → unit

reduce : int × int × (int→ 𝛼) × (𝛼 × 𝛼 → 𝛼) × 𝛼 → 𝛼

The semantics of par(𝑓 , 𝑔) is to execute 𝑓 () and 𝑔() in parallel, returning a tuple of their results.

Semantically, parfor(𝑖, 𝑗, 𝑓 ) executes all of {𝑓 (𝑖), 𝑓 (𝑖 + 1), . . . , 𝑓 ( 𝑗 − 1)} in parallel. In a similar

way, reduce(𝑖, 𝑗, 𝑓 , 𝑐, 𝑧) computes the “sum” of {𝑓 (𝑖), 𝑓 (𝑖 + 1), . . . , 𝑓 ( 𝑗 − 1)} with respect to the

binary, associative “combining” function 𝑐 and corresponding “zero” element 𝑧. In fact, parfor is
just a special case of reduce, using the trivial combining function over the type unit.1 Therefore,
throughout the paper, we will refer to reduce as a “parallel loop”, where the function 𝑓 is the

“body” of the loop. This primitive parallel loop can be used to implement a wide variety of common

parallel operations on sequences, such as map, filter, scan (prefix sums), flatten, and many

others [Westrick et al. 2022b].

While our approach is fully able to express efficient fork-join parallelism, the central contribution

of this paper is a technique for compiling and executing parallel loops efficiently. Our approach

guarantees low overhead relative to a sequential, iterative loop on a single core while maintaining

high scalability on many cores, regardless of what code appears within the loop body. This is

difficult because loops can contain arbitrary code in their loop bodies, including other (nested)

loops, which might be hidden behind function calls, perhaps recursively. It is also common to see

1
In our actual implementation, this is optimized away by the compiler, producing an efficient implementation of parfor.
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“tight loops” with just a handful of instructions in the loop body. Loops may also be irregular and/or

data-dependent, with no statically predictable cost within each body, and varying costs across

different iterations within the same loop. Our goal is to ensure that all parallel loops perform well,

in all possible cases, with no need for programmer intervention.

3.1 Encoding par in Spork IR

fun par𝑓 ,𝑔 ()

entry ():
spork

evalF ():
call 𝑓 ()

check (𝑥):
spoin

evalG ():
call 𝑔()

join (𝑦1):
goto(𝑦1)

done (𝑦):
return(𝑥,𝑦)

𝑔()

body

unpr prom

spwn

fast path block slow path block

control flow when new thread

spawns/returns

Fig. 5. Implementing par in

Spork IR for a particular 𝑓 , 𝑔.

Before a program is lowered to Spork IR, we assume it has been

subjected to standard compiler transformations (monomorphiza-

tion, defunctionalization, ...) which for each source-level call to

par(𝑓 , 𝑔) result in a specialized, first-order variant par𝑓 ,𝑔 (). Once
the program is lowered to Spork IR, we introduce definitions for

each of these par functions as shown in Figure 5.

par𝑓 ,𝑔 () begins in the entry block, which immediately sporks,

jumping to the evalF block and then calling 𝑓 (). If the program
decides to promote something while evaluating 𝑓 () and there

are no older unpromoted sporks, it spawns a new thread running

𝑔() in parallel. When the original thread finishes evaluating 𝑓 (),
it continues execution at check, with 𝑥 storing the result of 𝑓 ().
Then, it spoins, checking if a promotion occurred. If another

thread did run 𝑔(), it synchronizes with that thread by waiting

for it to finish and then jumping to join with 𝑦1 storing the result

of 𝑔(). If the spork remained unpromoted, spoin takes the other

path and jumps to evalG. In this case it still needs to execute 𝑔(),
doing so in the same thread and then returning the two results.

The common case of par𝑓 ,𝑔 () is when no promotion occurs,

indicated by bolded boxes in the figure. In this (sequential) case,

the fast path only incurs the overhead of a jump at spork (usu-

ally eliminated by block ordering) and a conditional at spoin.

Nonetheless, it remains able to be parallelized when needed. This implementation of par𝑓 ,𝑔 () can
itself be inlined by an optimizing compiler if beneficial, and in no way interferes with the contents

of 𝑓 and 𝑔 being inlined on the fast path as well (though 𝑔 must remain defined for the spawn call

on the slow path). Since spork and spoin can be safely viewed by most compiler optimizations as

simple control flow transfers, using par𝑓 ,𝑔 () to enable parallelism when needed instead of calling

𝑓 () and 𝑔() in sequence does little to disrupt existing compiler optimizations for the fast path.

3.2 Encoding Parallel reduce in Spork IR
To meet our goal of low-overhead, fully parallelizable loops that perform well in any context, we

propose a novel technique for encoding parallel reduce in Spork IR. Our approach functions very

similarly to an intraprocedural, iterative loop, but nevertheless is able to be split into an arbitrary

number of parallel tasks. Our design is motivated by the principle that fast sequential performance
leads to fast parallel performance: because the common case is sequential, optimizing for this case

results in each parallel thread performing its own (sequential) work more efficiently, resulting in a

faster program even in a parallel setting.

Towards this end, we wrap the loop body inside a spork-spoin pair. If the program promotes the

spork during the execution of a loop iteration, it breaks off all remaining iterations, splits them in

half, and executes each half (potentially) in parallel. Therefore, this typically results in three threads:

one completing only the rest of the original loop iteration and two new threads executing each half



10 McDonald et al.

fun reduce𝑓 ,𝑐,𝑧 (𝑎, 𝑖, 𝑗)

entry0 ():
goto(𝑎, 𝑖)

guard (𝑎0, 𝑖0):
if(𝑖0 < 𝑗)

iter ():
𝑖1 ← 𝑖0 + 1

spork

done0 ():
return(𝑎0)

body ():
call 𝑓 (𝑖0)

accum (𝑎1):
call 𝑐 (𝑎0, 𝑎1)

check (𝑎2):
spoin

next ():
goto(𝑎2, 𝑖1)

break (𝑎3):
call 𝑐 (𝑎2, 𝑎3)

done1 (𝑎4):
return(𝑎4)

split𝑓 ,𝑐,𝑧 (𝑧, 𝑖1, 𝑗)

then else

body

unpr prom

spwn

usually
inlined

fun split𝑓 ,𝑐,𝑧 (𝑎, 𝑖, 𝑗)

entry1 ():
𝑚 ← 1

2
(𝑖 + 𝑗)

spork

left ():
call reduce𝑓 ,𝑐,𝑧 (𝑎, 𝑖,𝑚)

middle (𝑎0):
spoin

leftover ():
call reduce𝑓 ,𝑐,𝑧 (𝑎0,𝑚, 𝑗)

join (𝑎1):
call 𝑐 (𝑎0, 𝑎1)

done2 (𝑎2):
return(𝑎2)

reduce𝑓 ,𝑐,𝑧 (𝑧,𝑚, 𝑗)

body

promunpr

spwn

fast path block

slow path block

control flow

when new thread

spawns/returns

Fig. 6. Implementing parallel reduce in Spork IR for a particular 𝑓 , 𝑐, 𝑧. For each call to the higher-order

reduce(𝑖, 𝑗, 𝑓 , 𝑐, 𝑧), we generate specialized first-order functions reduce𝑓 ,𝑐,𝑧 (𝑎, 𝑖, 𝑗) and split𝑓 ,𝑐,𝑧 (𝑎, 𝑖, 𝑗)
unique to that call. The calls to 𝑓 and 𝑐 on the fast path may (and often will) be inlined.

of all remaining iterations. Each of these new threads reverts to the initial, iterative behavior of the

loop, but remains ready to be split even further in the same way.

Just as with par, we assume the program has already been subjected to various compiler

transformations by the time it is lowered to Spork IR, having changed each source-level call

to reduce(𝑐, 𝑧, 𝑖, 𝑗, 𝑓 ) into a specialized, first-order variant reduce𝑓 ,𝑐,𝑧 (𝑧, 𝑖, 𝑗).
Using spork and spoin, we implement parallel reduce in Spork IR for a particular 𝑓 , 𝑐 , and 𝑧 as

in Figure 6. Aside from promotions (which are amortized by sequential work), this reduce is much

like an iterative, sequential loop. The function’s implementation starts with the guard block, which

checks if the loop is incomplete (that is, 𝑖 < 𝑗 ). If there remains work to do, it sporks: by default,

the program continues to the body block, which calls 𝑓 with the current iteration index 𝑖0 and then

combines the result with the current accumulator 𝑎0 by calling 𝑐 . If the body of the loop (blocks

body and accum) completes without the spork being promoted, spoin jumps to the unpromoted

continuation next, which returns to the loop guard for the next iteration 𝑖1.

However, if the program decides to parallelize while evaluating the loop body and finds that this

is the oldest unpromoted spork, it creates a new thread running split𝑓 ,𝑐,𝑧 (𝑧, 𝑖1, 𝑗). Then, the original
thread resumes its execution and, when finished, spoins: since the spork’s potential parallelism

was promoted, it waits for the newly spawned thread to finish, passing its final return value as an
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argument to break. It then calls the combine operator 𝑐 with the accumulated result of the iterations

up to this point (𝑎1) and the result of the rest as computed on the spawned thread (𝑎2), returning

that value.

When a thread is spawned running split𝑓 ,𝑐,𝑧 (𝑧, 𝑖1, 𝑗), it splits the range in half and executes

each half potentially in parallel, in a very similar way to par (though split𝑓 ,𝑐,𝑧 (𝑧, 𝑖1, 𝑗) makes a

small optimization by passing 𝑎0 as the starting accumulator to the reduce𝑓 ,𝑐,𝑧 (𝑎0,𝑚, 𝑗) in the

unpromoted case, rather than having an additional combine call 𝑐). Each half of the remaining loop

iterations runs by switching back to the iterative approach of reduce.

This implementation allows for every single loop iteration to become a task with its own thread if

needed. Additionally, 𝑓 and 𝑐 can be inlined in the loop body, allowing arbitrary nesting of reduce.
This is important for the performance of short, tight loops and nested parallel loops: the modest

overhead of a function call for every loop iteration can be detrimental to the overall performance

of the program. Our design allows for inlining to avoid this, as the fast path of reduce becomes

entirely intraprocedural (having no function call) when 𝑓 and 𝑐 are inlined. Moreover, since the

control flow of the loop is intraprocedural, it enables existing (sequential) loop optimizations to

work on the fast path (e.g. code motion, loop unrolling, loop unswitching).

4 MPL
sp: A Compiler for Automatically Managed Parallel Loops

We present MPL
sp
, a compiler that produces efficient parallel loops by implementing Spork IR,

and a runtime system that uses heartbeat scheduling to schedule promotions, and work-stealing

scheduling to load-balance promoted tasks. MPL
sp

is derived from MPL, which itself extends

MLton [MLton nd; Weeks 2006], a whole-program optimizing compiler for Standard ML, with

support for fork-join style parallelism.MPL inherits many features fromMLton, especially in terms

of the compiler proper; the most substantial changes are localized to the runtime system to support

thread scheduling and memory management and to the implementation of the (extended) standard

library, where a significant portion of thread scheduling and memory management is implemented

in source SML code with calls to MPL runtime-system functions as necessary.

The most challenging aspect of the implementation is the maintenance of the call-stack, which

serves as the interface between the runtime system and the generated code. Our goal is to lower

Spork IR into executable code that carefully constructs and maintains a call-stack which can be

interrupted at regular intervals by the runtime system and subjected to a promotion operation.

Following Acar et al. [2018], promotions are scheduled periodically by the runtime system (across all

active threads), and each promotion selects the oldest promotable spork-spoin pair, to guarantee that

the asymptotic parallelism of the computation is preserved. We describe the promotion scheduling

algorithm in more detail in Section 4.3.

Key Ideas and Section Overview. At a high level, the key idea for call-stack maintenance is to

statically associate each spork-spoin pair with a designated stack slot called a spork slot. The spork
slot is used to keep track of whether or not its associated spork has already been promoted; the

corresponding spoin can then inspect this slot to conditionally continue down the fast path or

redirect onto the slow (synchronization) path. To promote the oldest spork-spoin pair within a

call-stack, the runtime system executes the following steps.

(1) Walk the call-stack to find the oldest promotable frame, and identify the oldest promotable

spork-spoin pair within this frame.

(2) Allocate a join token, i.e., a synchronization object which will be used to synchronize the

newly exposed task.

(3) Store (a pointer to) the join token into the appropriate spork slot of the identified frame.
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(4) Copy the frame, and initialize the copy as a new thread to execute the “spwn” branch of the

spork.

The remainder of this section explains how exactly the idea above is implemented in MPL
sp
.

In Section 4.1, we describe how Spork IR is extended with explicit handling of join tokens, and

how the use of join tokens allows us to decouple the implementation of the compiler from the

scheduler. In Section 4.2, we explain how spork slots are associated with spork-spoin pairs (which is

complicated by the fact that spork-spoin pairs can be freely nested), illustrate a promotion operation

on an example program, and make precise how spork and spoin are lowered into assembly-level

instructions. Section 4.2.2 describes how spork and spoin are embedded into the compiler proper

and how these primitives interact with closure conversion, exceptions, and exceptional control-flow.

Section 4.3 describes how promotions are scheduled, in particular, making use of a token accounting

method previously proposed by Westrick et al. [2024]. Token accounting is closely integrated with

work-stealing scheduling and the source-level embedding of spork-spoin pairs; we wrap up this

section by describing these interactions in Section 4.4 and Section 4.5, respectively.

4.1 Join Tokens and the Separation of Compiler and Scheduler
Implementing the semantics of Spork IR inMPL

sp
requires integration with the thread-scheduling

components of MPL. In particular, the promote rule creates a new thread and the spoin-prom

rule synchronizes two threads. This creates a tension, becauseMPL’s thread scheduling andmemory

management is implemented outside of the compiler proper, in the runtime system and in source

SML code with calls to runtime-system functions. This separation is good engineering practice, as it

allows the thread-scheduling (including promotion and synchronization) and memory-management

components of MPL to be implemented in high-level programming languages, rather than a low-

level compiler intermediate representation. A direct implementation of Spork IR would require the

back-end of the compiler to lower spoin and (some) return transfers to uses of synchronization

operations, but those operations are only indirectly available to the compiler, in the sense that they

are part of the program being compiled but are not otherwise distinguished.

fun par𝑓 ,𝑔 ()

entry ():
spork

evalF ():
call f ()

check (𝑥):
spoin

evalG ():
call g()

join (jt
0
):

call getjoin(jt
0
)

done (𝑦):
return(𝑥,𝑦)

body

unpr prom

spawn (jt
1
):

call g()

sync (𝑧):
call setjoin(jt

1
, 𝑧)

exit ():
return()

spwn

Fig. 7. Revised implementation of par.

To resolve this tension, we implement the promotion and

synchronization aspects of Spork IR in source SML code and

the runtime system and the control-flow aspects in the com-

piler proper. To motivate our implementation, we briefly

sketch a simple variant of Spork IR using a revised imple-

mentation of par (Figure 7). There are two changes made in

this variant. First, the spawn argument of spork is no longer

a function call 𝑔spwn (𝑥), but the label of a new basic block

𝑏spwn which simply performs call 𝑔spwn (𝑥) The second is that

a parent and child synchronize explicitly via a join token2 that
is created at the time of a promotion. The join token is passed

to the 𝑏spwn block of the promoted spork transfer and to the

𝑏prom block of the matching spoin transfer. The compiler only

“knows” about spork and spoin transfers, while the setjoin

and getjoin functions are implemented in source SML code

with calls to MPL runtime-system functions. While the Spork IR spoin-unprom rule only allows

a parent to synchronize with the termination of its most recent child, join tokens are more general,

allowing any thread executing getjoin to synchronize with and receive the value of any other

2
Essentially, an Id-style write-once synchronous variable [Arvind et al. 1989]
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thread executing setjoin with the same join token; such a synchronization mechanism is widely

available in parallel languages.

4.2 Implementing Spork IR in the Compiler
4.2.1 Back-end Changes: Using Frames to Implement spork, spoin, and Promotion. The most chal-

lenging aspect of the implementation is to efficiently track the nesting of sporks in a manner that

both (1) allows the runtime system to identify the oldest spork that can be promoted, and (2) admits

efficient implementations of spork and spoin transfers, particularly the determination of whether

or not the last spork was promoted.

Properly nested spork scopes and spork nestings. The primary insight is that the idiomatic use

of spork and spoin to implement reduce and par introduces spork and spoin in matching pairs

that delimit spork scopes that are properly nested (if, due to inlining, there are multiple spork-spoin

pairs in a function). Informally, a spork’s scope is the region of the control-flow graph that must

be entered via the 𝑏body of the spork and exited via the matching spoin. Proper nesting means

that, for any distinct pair of sporks in a function, their scopes are either disjoint or one is a proper

subset of the other. This property is asserted for Spork IR by the well-formedness rules discussed

in Section 2.4 and Appendix A.

Figure 8 shows the control-flow graph, after inlining, for an example function that performs a

par within doubly-nested reduces. The dotted boxes denote the spork scopes, where scopeC nests

within scopeB, scopeB nests within scopeA, and scopeA′ is disjoint from the other spork scopes.

Given the control-flow graph of a function with properly nested spork scopes, we can perform a

simple analysis to statically determine, for each control-flow point, its spork nesting. A spork nesting

is a sequence, where the first element is the outermost (largest) scope and the last element is the

innermost (smallest) scope. Each scope can also be associated with the 𝑏spwn label of its delimiting

spork. For example, at block bodyB1, the spork nesting is [scopeA/spawnA, scopeB/spawnB] while
at block checkC, the spork nesting is [scopeA/spawnA, scopeB/spawnB, scopeC/spawnC]. Note
that each spork scope occurs at the same index in each spork nesting of which it is a member; this

index can be associated with the scope’s delimiting spork and spoin. For example, the spork in

block iterB is annotated with ⟨1⟩ because scopeB always occurs at index 1.

Lowering spork and spoin. Using these observations, we can give a realization of the spawn deque

and implementations of spork and spoin transfers and of promotion. During lowering, when the

call stack is made explicit, the back-end reserves spork slots: a contiguous sequence of 𝑁 slots at the

bottom of a function’s stack frame, where 𝑁 is the maximum length of any spork nesting of the

function. At a control-flow point with an associated spork nesting of length 𝑛, the bottom 𝑛 spork

slots are active and the remaining slots are inactive. For example, the stack frame for the function

from Figure 8 requires three spork slots and, when control is at block bodyB1, slots 0 and 1 are

active, corresponding to scopeA and scopeB, and slot 2 is inactive; see Figure 10a. Our invariant

is that, when at a control-flow point, each inactive spork slot is NULL and that each active spork

slot is NULL when it corresponds to a spork scope that has not been promoted and is non-NULL
when it corresponds to a spork scope that has been promoted. To establish this invariant, the

back-end extends the function prologue with a write of NULL to each of the spork slots, since

function execution begins in an empty spork nesting and all spork slots are inactive.

Figure 9 shows the lowering of spork and spoin transfers to (pseudo) assembly code. A spork

transfer is lowered to nothing more than a jump to 𝑏body; the corresponding spork slot is transition-

ing from inactive to unpromoted active, so no change to the spork slot is required. A spoin transfer

is lowered to a sequence that reads from the spork slot at the spoin’s associated index (by loading

from an offset of the frame pointer), compares the read value with NULL, conditionally branches
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fun example(𝑛)

entryA0 ():
goto(0, 0)

guardA (𝑎0, 𝑖0):
if(𝑖0 < 𝑛)

doneA0 ():
return(𝑎0)

iterA ():
𝑖1 ← 𝑖0 + 1

spork⟨0⟩

bodyA ():
goto()

entryB0 ():
goto(1, 0)

guardB (𝑏0, 𝑗0):
if( 𝑗0 < 𝑖0)

doneB0 ():
goto(𝑏0)

iterB ():
𝑗1 ← 𝑗0 + 1

spork⟨1⟩

bodyB0 ():
call foo( 𝑗0)

bodyB1 (𝑧):
goto()

entryC ():
spork⟨2⟩

evalFC ():
call bar( 𝑗0)

checkC ():
spoin⟨2⟩

evalGC ():
call baz( 𝑗0)

joinC (jtC0):
call getjoin(jtC0)

doneC (𝑦0):
goto(𝑥0, 𝑦0)

bodyB2 (𝑥1, 𝑦1):
goto((𝑥1 − 𝑦1) ∗ 𝑧)

accumB (𝑏1):
goto(𝑏0 ∗ 𝑏1)

middleB (𝑏2):
spoin⟨1⟩

nextB ():
goto(𝑏2, 𝑗1)

joinB (jtB0):
call getjoin(jtB0)

breakB (𝑏3):
goto(𝑏2 ∗ 𝑏3)

doneB1 (𝑏4):
goto(𝑏4)

accumA (𝑎1):
goto(𝑎0 + 𝑎1)

middleA (𝑎2):
spoin⟨0⟩

nextA ():
goto(𝑎2, 𝑖1)

joinA (jtA0):
call getjoin(jtA0)

breakA (𝑎3):
goto(𝑎2 + 𝑎3)

doneA1 (𝑎4):
return(𝑎4)

elsethen

body

elsethen

body

body

unprprom

unprprom

unprprom

scopeC

scopeB

scopeAspawnA (jtA1):
goto()

entryA1 ():
𝑚𝐴 ← 1

2
(𝑖1 + 𝑛)

spork⟨0⟩

leftA ():
call reduce𝐴 (0, 𝑖1,𝑚𝐴)

middleA (𝑎5):
spoin⟨0⟩

leftoverA ():
call reduce𝐴 (0,𝑚𝐴, 𝑛)

joinA0 (jtA3):
call getjoin(jtA3)

joinA1 (𝑎6):
goto(𝑎5 + 𝑎6)

doneA2 (𝑎7):
goto(𝑎7)

body

unprprom

scopeA’

syncA (𝑎8):
call setjoin(jtA1, 𝑎8)

exitA ():
return()

spwn

spawnA
′ (jtA2):

call reduce𝐴 (0,𝑚𝐴, , 𝑛)

syncA
′ (𝑎9):

call setjoin(jtA2, 𝑎9)

exitA
′ ():

return()

spwn

spawnB (jtB1):
call split𝐵 ( 𝑗1, 𝑖0)

syncB (𝑏5):
call setjoin(jtB1, 𝑏5)

exitB ():
return()

spwn

spawnC (jtC1):
call baz( 𝑗0)

syncC (𝑦2):
call setjoin(jtC1, 𝑦2)

exitC ():
return()

spwn

fun example n =
reduce (0, n, fn i =>

reduce (0, i, fn j =>
let val z = foo j

val (x, y) =
par (fn () => bar j,

fn () => baz j)
in (x - y) * z end ,
op*, 1),

op+, 0)

Fig. 8. Control-flow graph for fun example n = ... after inlining, demonstrating nested spork scopes. The

highlighted basic blocks are control-flow points referenced in text and Figure 10.
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block 𝑏 (𝑥){. . . ; spork⟨𝑘⟩(𝑏body ∥𝑏spwn)} ⇒ 𝑏: . . .

jmp 𝑏body // †

block 𝑏 (𝑥){. . . ; spoin⟨𝑘⟩(𝑏unpr, 𝑏prom)} ⇒ 𝑏: . . .

where block 𝑏prom (jt){. . .} ld fp[𝑘], jt
cmp jt, NULL
jne 𝑏prom
jmp 𝑏unpr // †

block 𝑏prom (jt){. . .} ⇒ 𝑏prom: st NULL, fp[𝑘]
where spoin⟨𝑘⟩(𝑏unpr, 𝑏prom) . . .

block 𝑏spwn (jt){. . .} ⇒ 𝑏spwn: . . . // caller-side returning code

where spork⟨𝑘⟩(𝑏body ∥𝑏spwn) ld fp[𝑘], jt
st NULL, fp[𝑘]
. . .

Fig. 9. Lowering of spork and spoin. Marked jmp instructions are likely eliminated by basic-block ordering.

when false to 𝑏prom, and (when true) jumps to 𝑏unpr. The lowering of a 𝑏prom block begins by storing

NULL to the slot since the corresponding spork slot is transitioning from promoted active to inactive.

The 𝑏prom block argument jt is the non-NULL value read from the spork slot in the lowering of the

spoin transfer; as described earlier, the non-NULL value that is passed to 𝑏prom will be (a pointer to)

a join token used to obtain the final value from the child thread, although the entire compiler is

agnostic to the meaning of the non-NULL value.

Note that these lowerings yield an extremely efficient fast (sequential) path: a spork performs

only a jump and a matching spoin performs only a read, a comparison, a (failing) conditional

branch, and a jump; moreover, the jumps will typically be eliminated by basic-block ordering.

Promotion. Although promotion is implemented in the runtime system, it must manipulate call

stacks, and therefore, we discuss it here. The promotion procedure is invoked with a call stack and

a fresh join token and must walk the call stack to find and promote the oldest unpromoted spork.

From MLton, a call-stack is a contiguous sequence of frames delimited by stack-bottom and

stack-top pointers; a frame collects local variables that are live when a function is suspended at a

call and stores a return address at the top of the frame. Each return address can be mapped, via

static data emitted by the compiler, to a frame information record that includes a frame size and an

array recording the frame offsets of live pointers for precise garbage collection. To walk the call

stack, the promotion procedure initializes a walk pointer with the stack-top pointer and iterates

over each frame by reading the return address pointed to by the walk pointer and decrementing the

walk pointer by the size recorded in the corresponding frame info until the walk pointer is equal to

the stack-bottom pointer. MPL
sp
, in addition to reserving spork slots at the bottom of each frame,

extends the frame info with the spork nesting (as an array of 𝑏spwn labels) of the control-flow point

that corresponds to the return address. For example, the frame info for bodyB1 (the return address

for the call foo( 𝑗0) of block bodyB0) includes the spork nest [spawnA, spawnB] (Figure 10a).
Based on the invariant for active spork slots, the promotion procedure must find the oldest

(lowest in the call stack) NULL active spork. In order to distinguish between active and inactive

NULL spork slots, the promotion procedure uses the length of the spork nesting from the frame

info. Once the promotion procedure has found the correct frame and active spork slot, it writes
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(a) Immediately before first promotion; parent thread is executing call foo( 𝑗0) (that returns to bodyB1).
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spork nest (labels): [spawnA, spawnB]

live local vars (byte offsets): . . .

frame size (bytes): 𝑆𝑧

frame info record

First Child Thread

NULL

NULL

local variables slots

ret addr: spawnA

spork nest (labels): []

live local vars (byte offsets): . . .

frame size (bytes): 𝑆𝑧

join tok: Empty

(b) Immediately after first promotion.
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spork nest: [spawnA, spawnB, spawnC]

live local vars (byte offsets): . . .

frame size (bytes): 𝑆𝑧

frame info record

First Child Thread

NULL

NULL

NULL

local variables slots

ret addr: middleA
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spork nest (labels): [spawnA
′
]

live local vars (byte offsets): . . .

frame size (bytes): 𝑆𝑧

join tok: Empty

Second Child Thread

NULL

NULL

local variables slots

ret addr: 𝐿𝑠𝑝𝑤𝑛𝐵

spork nest (labels): []

live local vars (byte offsets): . . .

frame size (bytes): 𝑆𝑧

join tok: Empty

(c) Immediately after second promotion; parent thread has proceeded and is now executing call bar( 𝑗0) (that
returns to checkC); first child thread has started and is now executing call reduce𝐴 (0, 𝑖1,𝑚𝐴) (that returns
to middleA). Note the state of the first child thread has no influence on the second promotion.

Fig. 10. Call stacks of parent and child threads during promotions. Note that stacks grows upwards.

the (non-NULL) join token into the found active spork slot. Next, the found frame (including the

newly written non-NULL join token) is copied to the bottom of a new call stack, the 𝑏spwn label from

the found frame’s frame info’s spork nesting at the index corresponding to the found active spork

slot is written to the copied frame’s return address, and NULL is written to all of the spork slots

with lower indices than the found spork slot. These writes correspond to inactivating spork slots,

since the 𝑏spwn control-flow point is not in any spork scope. Figure 10 illustrates the effects of two

promotions on a parent thread executing the example function from Figure 8.

The lowering of the 𝑏spwn block of a spork transfer is handled specially (Figure 9). It is treated

as the return block of a call that returns no results and, after performing the caller-side of the

returning convention (e.g., adjusting the frame pointer), a value is read from the spork slot at the

spork’s associated index, NULL is written to that slot (inactivating it, since the 𝑏spwn control-flow

point is not in any spork scope), and execution continues with the read value as the 𝑏spwn argument.

For example, in Figure 10, when the first child thread starts executing, the join token passed via a
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spork slot (Figure 10b) is moved to a local variable slot (Figure 10c), from which it will be accessed

for the eventual setjoin operation.

4.2.2 Front-End and Closure-Conversion Changes. No changes to the syntax or type checking of the
source language were made to support spork and spoin. Instead, we added a polymorphic, higher-

order prim_spork_spoin primitive to the compiler. Compiler primitives are exposed as functions

in a generic manner and prim_spork_spoin required no special handling. Because Standard ML is

a higher-order language, it is easy to expose the non-trivial control-flow of spork and spoin as a

higher-order primitive. The earliest phase of the compiler that required changes was the closure-

conversion phase, which is responsible for transforming a higher-order IR into a first-order SSA IR,

using defunctionalization [Reynolds 1972] guided by a monovariant whole-program control-flow

analysis [Cejtin et al. 2000].

To the source program, the primitive is simply a polymorphic higher-order function, used as

prim_spork_spoin (tag : int, 𝑓body : unit→ 𝛼, 𝑓spwn : 𝛿 → 𝜁 ,

𝑓unprVal : 𝛼 → 𝛾, 𝑓unprExn : exn→ 𝛾,

𝑓promVal : 𝛼 × 𝛿 → 𝛾, 𝑓promExn : exn × 𝛿 → 𝛾) : 𝛾

The tag, which must be a compile-time constant, is associated with the spork and included in the

spork nestings added to frame infos; it is used to communicate a policy that is used at promotion

(see Section 4.3). The 𝑓body and 𝑓spwn functions correspond to the code for the homonymous edges

of the introduced spork. Instead of a single matching spoin, the lowering of prim_spork_spoin
introduces two matching spoins; one spoin, with the 𝑓unprVal and 𝑓promVal functions corresponding

to the code for the 𝑏unpr and 𝑏prom edges, is executed if 𝑓body terminates with a value and the other

spoin, with 𝑓unprExn and 𝑓promExn for 𝑏unpr and 𝑏prom, is executed if 𝑓body terminates with an uncaught

exception. If, during optimization, 𝑓body and the functions it calls are inlined (as is often the case),

the resulting control-flow graph will goto directly from the returning of a value to the value spoin

and goto directly from the raising of an exception to the exception spoin. One motivation for

this value/exception split is that it would be incorrect for control to leave the spork scope via

an uncaught exception (rather than via a matching spoin). We describe a second performance

motivation in Section 4.5. The 𝛿 argument corresponds to the arbitrary data value stored in the spork

slot when promoted. Although this data value will always be a join token used for synchronization,

making the prim_spork_spoin polymorphic with respect to it emphasizes that the compiler makes

no assumptions about it and treats it opaquely.

The primitive posed little difficulty for the control-flow analysis or defunctionalization trans-

formation of the closure-conversion phase. Translating a prim_spork_spoin simply amounts

to building an SSA control-flow-graph fragment that performs the appropriate defunctionalized

calls in the code executed by a spork and its two matching spoins. The complexity of building

SSA IR control-flow graphs is mediated by a direct-style interface that is inspired by the CPS

translation [Kelsey 1995]. Importantly, this translation of prim_spork_spoin guarantees that the

resulting SSA IR functions have properly nested spork scopes.

4.3 Parallelism Management: Heartbeat Scheduling Promotions
While the MPL

sp
compiler is responsible for the low-level compilation that yields an efficient

implementation of spork and spoin transfers, the thread-scheduling component ofMPL
sp
, imple-

mented in source SML code and the runtime system, is responsible for the promotion strategy.

MPL
sp

uses heartbeat scheduling [Acar et al. 2018; Rainey et al. 2021] with a token accounting

algorithm [Westrick et al. 2024]: each time a thread performs 𝑁 units of work, it receives 𝐶 tokens

that must be eagerly spent to promote the oldest unpromoted sporks on the thread’s call stack
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(with each promotion costing one token), but can be banked if the thread has no promotable sporks.

Eager spending means that a thread must check for unspent tokens when entering a spork scope

(and spend one immediately to promote this spork); we handle this aspect in Section 4.5. This

algorithm guarantees work- and span-efficiency [Westrick et al. 2024]: if a program has work𝑊

and span 𝑆 (excluding the costs of promotions) and a promotion costs 𝜏 , then the program will

perform at most
𝐶
𝑁
𝑊 promotions and have at most total work (1 + 𝐶 ·𝜏

𝑁
)𝑊 and total span (𝜏 + 𝑁 )𝑆

(including the costs of promotions).

Explicitly counting and checking steps of (non-promotion) work by each thread would be

prohibitively expensive; a practical application of heartbeat scheduling approximates work done by

the passage of (wall-clock) time. An interval timer delivers a SIGALRM to the program with period

𝑁 and a signal handler grants each active thread 𝐶 heartbeat tokens and attempts promotions. The

𝑁 and 𝐶 parameters are tuned for a particular hardware-software stack, but not for a particular

program. InMPL
sp

for the hardware described in Section 5, we set 𝑁 to 500𝜇𝑠 and𝐶 to 30 to ensure,

on average, 500𝜇𝑠/30 ≈ 16𝜇𝑠 of work per promotion.

When a parent has excess tokens at a promotion, it has the option of giving some of those

tokens to the spawned child (without violating the efficiency guarantees). A spork is tagged with a

token-sharing policy: either give half of the parent’s excess tokens to the child or give all of them.

The sporks in par and in the generated split helper function of a reduce use the first policy (see

Figures 5 and 6), since the body and the (potential) child thread are typically of comparable work,

while the spork in reduce uses the second policy, since the remaining loop iterations are expected

to be significantly more work than the one current loop iteration. We consider the reverse—when a

child with excess tokens joins with its parent—in the next section.

4.4 Work-Stealing Scheduler
To execute threads on processors, MPL

sp
uses a fork-join work-stealing scheduler, which provides

an opportunity for additional behavior. When a child is spawned at a promotion, it is pushed

to the back of a scheduler deque, from which it can be stolen by a worker for execution. With

work-stealing, the getjoin operation first observes, by attempting to pop from the back of the

scheduler deque, whether or not the child was stolen.
3
If it was, then a full synchronization with

the corresponding setjoin must occur to obtain a value from the child. But, if it was not, then the

parent can choose how to proceed. It could interpret this as though no promotion happened, in

which case it jumps to the 𝑏unpr code. This is the choice we make for the spoins in par and split.

But, for the spoin in reduce, we execute the spawn call in the current thread and then jump to

the 𝑏prom block. Even though the child was not stolen, the fact that a promotion occurred prompts

splitting the loop.

When a stolen child joins with its parent, it gives all of its excess tokens (not necessarily the

same ones that it was given at its promotion) to its parent. When an unstolen child is observed

by its parent, the treatment of its excess tokens (necessarily the same ones that it was given at

its promotion) depends on the token-sharing policy of the spork. If the child received half of its

parent’s excess tokens, then they are discarded; it is typically unhelpful to encourage additional

promotions with more tokens if child threads are not being stolen for execution. But, if the child

received all of its parent’s excess tokens, then they are all returned to the parent; in reduce, this

means that the excess tokens will be available to be fairly shared by the spork of split.

3
If the deque is empty, then the child was stolen; otherwise, the back element is the unstolen child.
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fun promote thrd = runtime_promote (thrd , newJoinTok ())
datatype 'a result = Val of 'a | Exn of exception
fun extract res = case res of Val v => v | Exn exn => raise exn
datatype tokshr_policy = GIVE_NONE | GIVE_HALF | GIVE_ALL
fun spork_spoin (policy: tokshr_policy , body: unit -> 'a, spwn: unit -> 'b,

unpr: 'a -> 'c, prom: 'a * 'b -> 'c, unstolen: 'a -> 'c): 'c =
let
fun body ' () =
let val _ = if tokens () > 0 then promote (Thread.current ()) else ()
in body () end

fun spwn ' (jt: 'b jointok) = let val sr = Val (spwn ()) handle exn => Exn exn
in setJoin (jt, sr) ; Thread.exit () end

fun unprVal ' bv = unpr bv
fun unprExn ' exn = raise exn
fun promVal ' (bv, jt: 'b jointok) = case getJoin jt of

NONE => unstolen bv
| SOME sr => prom (bv, extract sr)

fun promExn ' (exn , jt: 'b jointok) = (getJoin jt ; raise exn)
val tag = encodePolicy policy

in
prim_spork_spoin (tag , body ', spwn ', unprVal ', unprExn ', promVal ', promExn ')

end

Fig. 11. spork_spoin function that wraps a use of the prim_spork_spoin primitive

4.5 Integration via Source SML Code
A spork_spoin function finishes the implementation of the Spork IR semantics, by performing

the necessary integration with the synchronization, parallelism management, and work-stealing

components around a use of prim_spork_spoin. We must ensure that the 𝑓spwn function seen

by the primitive ends with a setjoin followed by a thread exit and that the 𝑓promVal and 𝑓promExn

functions begin with a getjoin (Section 4.1). We must immediately trigger a promotion if the

current thread has excess tokens (Section 4.3) and we safely expose the token-sharing policies

(Section 4.3). We expose an additional possible code path to be used when a child is spawned by

a promotion but is not stolen (Section 4.4). And, we reify (and later propagate) exceptions raised

by the execution of a child thread (giving precedence to exceptions raised by the body). This

well-behaved spork_spoin function (Figure 11) can be used to robustly implement higher-level

parallel operations.

We focus again on the fast (sequential) path that excludes “user code”: the (implicit, compiler-

implemented) spork, execution of body’ without an eager promotion and excluding body, the
(implicit, compiler-implemented) spoin, execution of unprVal’ excluding unpr. Compared to the

fast pass described at the end of Section 4.2.1, this adds only a read of the current thread’s tokens

(stored as thread-local metadata), a comparison, and a (failing) conditional branch.

We also provide a performance reason for prim_spork_spoin to handle exceptions. Suppose

the lowering of prim_spork_spoin only introduced one matching spoin. spork_spoin would be

responsible for ensuring that an exception raised by the spork body is propagated across the spoin,

using reification as with the child thread. body’would end with Val (body ()) handle exn => Exn exn,

which incurs an allocation, and, instead of both unprVal’ and unprExn’, there would be a single

fun unpr’ br = unpr (extract br), which incurs a case analysis. AlthoughMPL
sp
employs an efficient

bump allocator, even this single allocation and case analysis can add significant overhead to

an otherwise non-allocating loop that is executed many times; moreover, these allocations are

extremely short lived and can induce additional garbage collections. Although we do not give a
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detailed evaluation along this dimension in Section 5, we observe that having this allocation and

case analysis on the fast path is 1.14x slower on average on both single core and 80 cores.

Using spork_spoin, we implement reduce and par entirely in source SML code. The combina-

tion of monomorphisation, defunctionalization, inlining, and SSA IR optimizations specializes each

use of reduce and par to their call-sites, yielding the control-flow graphs from Figures 6, 5, and 8.

5 Evaluation
Our goal is to eliminate the burden of manually tuning parallelism grains, automatically achieving

good performance across any number of cores. We evaluate the effectiveness of our approach with

MPL
sp

towards this goal on a benchmark suite of parallel programs. In our evaluation, we study

three parts:

(1) In Section 5.2, we show that our technique achieves low overheads on a single core relative

to sequential elision, averaging 1.69x slower. At the same time, it maintains good parallel

scalability, delivering 46.9x self-speedup on 80 cores (a 27.7x speedup over sequential).

(2) In Section 5.3, we demonstrate that compared to manually tuned parallel code, our technique

needs no tuning yet introduces only 1.13x overhead on a single core and 1.32x on 80 cores.

(3) In Section 5.5, we find our implementation of parallel loops improves upon the divide-and-

conquer approach, getting 1.74x faster on a single core and 1.45x on 80 cores.

5.1 Experimental Setup and Benchmarks
Experiments are run on an 80-core machine equipped with two 2.30GHz Intel Xeon (40-core)

Platinum 8380 CPUs and 256GB of memory, running Ubuntu 22.04.4 LTS and Linux kernel version

5.15.0-101-generic. We use MLton version 20241230. Benchmark timings are evaluated with a 5

second warmup and then by taking the average of 20 back-to-back runs. For more stable results,

we disable hyperthreading and pin experiments to particular cores.

We consider 16 benchmarks from the Parallel ML Benchmark Suite [Arora et al. 2021, 2023;

Westrick et al. 2024], covering a variety of problem domains such as graph analysis, computational

geometry, sparse linear algebra, numerical algorithms, and text analysis. In all our experiments,

the code for the benchmarks is identical across systems except for the implementation strategy of

reduce and par and the presence (or absence) of manually tuned parallelism grains.

5.2 MPL
sp has low sequential overhead and good parallel scalability

We evaluate parallel eachMPL
sp

program against its sequential elision to determine (a) the over-

heads of our fully parallelizable approach in comparison to a fast sequential implementation,

and (b) the scalability of our approach on an increasing number of processors. Our sequential

implementations of par and reduce are shown in Figure 12, and compiled with MLton.

fun par (f, g) = (f (), g ())
fun reduce (i, j, f, c, a) =
if i >= j then a else
reduce (i+1, j, f, c, c (a, f i))

Fig. 12. Sequential implementation of par and

reduce.

Table 1 shows our results on 1 and 80 cores

(𝑇1 and 𝑇80) alongside the sequential elision (𝑇𝑠 )

and the corresponding sequential overheads and

parallel speedups. The column titled𝑇1/𝑇𝑠 shows
the overhead of using potentially parallel code

in MPL
sp

instead of purely sequential code even

when only one core is available, with an average

of 1.69x overhead. In 12 of the 16 benchmarks,

MPL
sp
has less than 2x overhead.MPL

sp
also maintains good parallel scalability, with 27.7x average

speedup in comparison to sequential on 80 cores. In Figure 13, we also plot the self-speedup of

MPL
sp

across a variety of core counts and observe generally that performance improves as the
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Table 1. Single-core (𝑇1) and 80-core (𝑇80) times for

MPL
sp

vs. sequential elision (𝑇𝑠 ), measured in seconds,

alongside sequential overhead and parallel speedup on

80 cores vs. sequential.

MPL
sp

Overhead Speedup

Benchmark 𝑇𝑠 𝑇1 𝑇80 𝑇1/𝑇𝑠 𝑇𝑠/𝑇80

bfs 2.86 3.10 .092 1.08 31.0

bignum-add .384 .861 .015 2.24 25.4

delaunay 4.91 7.54 .458 1.54 10.7

grep 1.74 2.41 .041 1.39 42.1

line-fit .327 1.28 .037 3.90 8.89

mandelbrot 1.80 2.66 .039 1.48 46.6

map-heavy 3.41 4.21 .055 1.23 61.9

map-light .326 .982 .034 3.02 9.60

merge-sort 3.40 6.13 .091 1.80 37.5

nearest-nbrs .965 1.34 .027 1.39 35.4

nqueens 1.14 1.47 .022 1.28 52.1

primes 1.28 2.12 .057 1.65 22.5

sparse-mxv 1.03 1.75 .036 1.71 28.4

suffix-array 2.30 2.77 .060 1.21 38.1

triangle-count 5.35 8.94 .144 1.67 37.1

word-count .488 1.11 .022 2.28 21.7

geomean 1.69 27.7
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Fig. 13. Self-scalability ofMPL
sp

to different proces-

sor counts.

number of cores increases, with 46.9x average self-speedup on 80 cores relative to MPL
sp
’s single-

core time 𝑇1. These results demonstrate that our approach is able to maintain high scalability, even

without any manual tuning or chunking of parallel loops.

The benchmarks bignum-add, line-fit, map-light, and word-count exhibit larger overheads. These
benchmarks are dominated by an extremely tight loop with only a few instructions per iteration,

which stresses our approach and magnifies any per-loop overhead. We inspected the code generated

for map-light and observed that some of the overhead is due to inefficient register allocation, result-

ing in unnecessary stack spilling on the fast path, which could be avoided with further optimization

effort. The primitives spork and spoin offer new opportunities for compiler optimizations, in partic-

ular by identifying performance-sensitive loop bodies and explicitly distinguishing between fast

and slow paths. We believe that this information could be exploited in future work to further close

the gap between sequential and parallel implementations.

5.3 MPL
sp competes with manually tuned parallelism

In this experiment, we compare against manually tuned parallel code. Since this code has manually

amortized the overheads of parallelism already, we use eager implementations of primitives as shown

in Figure 14. In comparison,MPL
sp

eliminates the need for any manual tuning while averaging

fun pare (f, g) = [primitive]
fun foldl (i, j, f, c, a) =

if i >= j then a else
foldl (i+1, j, f, c, c (a, f i))

fun reduce (GR , i, j, f, c, z) =
if j-i <= GR then foldl (c, z, i, j, f) else
c (pare (reduce (GR, i, (i+j)/2, f, c, z),

reduce (GR, (i+j)/2, j, f, c, z)))

Fig. 14. Manually tuned implementation of reduce,
which uses eager pare and requires a grain size GR
(highlighted above) to be chosen at every call-site.

only 1.13x overhead on a single core and 1.32x

overhead on 80 cores. Each of the manually tuned

programs compiled requires a grain size at each

reduce call site, specifying the number of loop

iterations to allocate to each task for that opera-

tion. This is in contrast to the otherwise identical

programs compiled withMPL
sp
, which needs no
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Table 2. Overheads of our approach (MPL
sp
)

vs. manually tuned code, which needs call site-

specific parallelism grains.

Manual Overhead

Benchmark 𝑇1 𝑇80

𝑇1 (MPL
sp )

𝑇1 (Manual)
𝑇80 (MPL

sp )
𝑇80 (Manual)

bfs 3.07 .071 1.01 1.30

bignum-add .737 .011 1.17 1.41

delaunay 7.26 .234 1.04 1.96

grep 2.36 .034 1.02 1.21

line-fit .675 .020 1.89 1.83

mandelbrot 2.38 .031 1.12 1.24

map-heavy 4.23 .055 .996 1.01

map-light 1.08 .032 .909 1.06

merge-sort 4.53 .064 1.35 1.42

nearest-nbrs 1.35 .025 .997 1.11

nqueens 1.65 .023 .889 .966

primes 1.99 .053 1.06 1.08

sparse-mxv 1.75 .034 1.00 1.06

suffix-array 3.82 .069 .726 .871

triangle-count 4.26 .064 2.10 2.23

word-count .703 .010 1.58 2.35

geomean 1.13 1.32

Table 3. Improvement factors of

our reduce (MPL
sp
) over divide-

and-conquer implementation.

D&C Improvement

𝑇1 𝑇80

𝑇1 (D&C)
𝑇1 (MPL

sp )
𝑇80 (D&C)
𝑇80 (MPL

sp )
6.17 .154 1.99 1.67

1.76 .027 2.04 1.80

7.99 .396 1.06 .866

4.91 .073 2.04 1.76

2.60 .039 2.03 1.06

4.16 .056 1.56 1.46

4.25 .055 1.01 1.01

4.48 .110 4.56 3.24

6.02 .094 .981 1.03

1.43 .028 1.06 1.01

2.20 .030 1.50 1.38

7.26 .153 3.43 2.69

5.87 .078 3.35 2.16

4.29 .091 1.54 1.51

9.90 .150 1.11 1.04

2.06 .028 1.85 1.23

1.74 1.45

parallelism grain control and automatically man-

ages task creation at heartbeats. Full results of

this comparison are shown in Table 2.

5.4 Our spork and spoin outperformWestrick et al. [2024]’s PCall
Westrick et al. [2024] provide an automatically managed implementation of par; their approach is

based on a single primitive called PCall which is essentially a promotable function call. As shown

in Section 3.1 and Figure 5, par can also be implemented using our spork and spoin primitives.

An immediate question is how this spork-spoin-based implementation of par compares against

Westrick et al. [2024]’s PCall-based implementation. We have measured that using spork and spoin

to implement par is approximately 15% faster on average. In other words, spork and spoin appear

to be both more general and more efficient than prior work on PCall-based parallelism management.

The spork and spoin primitives are more general in the sense that they can efficiently encode not

just par, but also parallel loops and reductions, as we develop in this paper. We believe the reason

for the 15% speedup on average is due to better compiler optimizations, especially inlining, which

can be blocked in certain cases by Westrick et al. [2024]’s PCall-based approach. Full results of this

comparison are available in Appendix B.

5.5 MPL
sp’s reduce outperforms the divide-and-conquer implementation

In this section, we compare our implementation of reduce against the divide-and-conquer imple-

mentation using par in Figure 15. This divide-and-conquer approach is that taken by Westrick et al.

[2024], which assumes binary fork-join parallelism and does not have primitive support for parallel

loops. Both implementations use automatic parallelism management to amortize the cost of task

creation at heartbeats, but our approach additionally benefits from a fast path which avoids the

cost of splitting the loop. In particular, our approach amortizes not just the cost of task creation,

but also the cost of computing loop-range midpoints and performing recursive calls for the left and

right halves of the range.
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fun par (f, g) = [primitive]
fun reduce (i, j, f, c, z) =
if i >= j then z else
if i+1 = j then f i else

c (par (reduce (i, (i+j)/2, f, c, z),
reduce ((i+j)/2, j, f, c, z)))

Fig. 15. Divide-and-conquer reduce, implemented

using the automatically managed par primitive.

This comparison uses MPL
sp

as the underly-

ing system for all measurements, only measuring

the difference between two implementations of

reduce. For the divide-and-conquer code, we use
MPL

sp
’s spork-spoin-based par.

We observe that benchmarks using our reduce
are on average 1.74x and 1.45x faster than when

they use the divide-and-conquer approach on 1 and 80 cores, respectively, as shown in Table 3. The

biggest improvements are in the benchmarks that most heavily rely on parallel loops, particularly

those with very tight and/or nested loops. For example, on map-light, our MPL
sp

exhibits 4.56x

improvement on a single core; this benchmark simply iterates over a large array (200 million

elements) and increments every element by 1. Both primes and sparse-mxv-csr employ nested

parallel loops with tight inner loops, and we observe 3.43x and 3.35x improvement on a single core.

Improvements on 80 cores are similar but smaller, which is expected because the additional

splitting costs incurred by the divide-and-conquer reduce are all local overheads which parallelize

well. Of the 80-core benchmarks,MPL
sp
’s reduce also outperforms divide-and-conquer in all but

one case, delaunay.
The delaunay benchmark is challenging because it has little theoretical parallelism. Indeed,

Figure 13 shows that delaunay parallelizes less than any of the other benchmarks, gaining only

16.5x self speedup on 80 cores. The benchmark performs many short bursts of parallel computation

interspersed by sequential work, making the end-to-end running time highly sensitive to how

quickly each parallel section “ramps up”. Our automatically managed implementation of reduce in

MPL
sp

can take approximately twice as many promotion tokens to disperse computation across all

processors compared to divide-and-conquer, due to the way it splits: the first promotion generates

a new task, which immediately begins executing the first half of the remaining loop iterations.

However, this task must wait for a second promotion before it can being executing the second half.

Existing work has shown that it is possible to increase the heartbeat rate on stock hardware [Rainey

et al. 2021; Su et al. 2024], which if applied in this case could improve scalability by decreasing

the delay between successive heartbeats and thereby supplying promotion tokens more rapidly.

Nevertheless, even in the case of low parallelism in delaunay, MPL
sp
’s reduce is only 13% slower

than divide-and-conquer on 80 cores.

This supports our claim that fast sequential performance leads to fast parallel performance, since
despite the fact that it takes as many as twice the promotions to effectively split a loop, ourMPL

sp
’s

reduce beats the divide-and-conquer implementation (with a sizeable average margin of 45% faster)

on all but one benchmark for 80 cores, and even then, is only 13% slower.

6 Related Work
The most closely related work to our paper is the recent work on parallelism management [Westrick

et al. 2024], which proposed the idea of fully automating parallelism management by combining

compilation and runtime techniques with recent advances in parallel programming languages

and scheduling. Our work differs from this prior work on parallelism management in that it

supports parallel loops as well as fork-join parallelism, whereas prior work considers fork-join only.

Even though parallel loops may be encoded in terms of fork-join parallelism, such an encoding

incurs significant overhead and prohibits loop optimizations by translating loops into recursive

functions. To support parallel loops (and fork-join parallelism) efficiently, we propose extending

the intermediate representation used by compilers with two key control-flow constructs, enabling

an encoding of a variety of parallelism primitives while facilitating parallelism management. Our
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work builds on a relatively broad array of prior and recent research works, which we review in the

rest of this section.

Scheduling techniques. All high-level parallel programming languages rely on a runtime scheduler

for managing tasks/threads, including their creation and load-balancing among the available cores.

Nearly all known schedulers today go back to Brent’s seminal work in 1970s [Brent 1974], which

established a bound of
𝑊
𝑃
+𝑆 for scheduling a task-parallel program on 𝑃 processors in terms of total

work𝑊 and span 𝑆 . Subsequent work generalized the bound to greedy scheduling [Arora et al. 2001;

Eager et al. 1989], to randomized work-stealing [Arora et al. 2001; Blumofe and Leiserson 1999],

and to account for data locality [Acar et al. 2015, 2002; Blelloch and Gibbons 2004; Chowdhury

and Ramachandran 2008; Lee et al. 2015; Spoonhower et al. 2009] and responsiveness [Muller et al.

2020; Muller and Acar 2016; Muller et al. 2017, 2018, 2023, 2019]. None of this work accounts for

the cost of spawning a task/thread.

Lazy task creation and lazy scheduling. In early 1990s, Mohr introduced lazy task creation to

mitigate task overheads [Mohr et al. 1991] and efficient implementation techniques have been

developed for futures and parallel calls [Feeley 1992, 1993a; Goldstein et al. 1996]. Follow-up work

adopted the idea for work-stealing schedulers [Bergstrom et al. 2012; Hiraishi et al. 2009; Kumar

et al. 2012; Tzannes 2012; Tzannes et al. 2010, 2014] and developed related techniques such as the

clone optimization [Frigo et al. 1998] to further mitigate scheduler overheads. These techniques are

able to spawn additional tasks in response to system load imbalance, and can help guarantee low

overhead for “sequentialized” tasks, i.e., tasks that are never spawned, or tasks that are spawned

but never migrated to another processor.

Granularity control. Task creation overheads can also be tamed using granularity control tech-
niques, where the goal is to ensure that every spawned task executes a sizeable amount of work.

Granularity control can be performed manually (e.g., by hardcoding sequential cutoffs and/or task

size parameters), but this approach has major limitations with respect to portability, accuracy,

and code modularity [Tzannes 2012; Westrick et al. 2024]. Numerous approaches and techniques

have been proposed to address the limitations of manual granularity control [Duran et al. 2008;

Huelsbergen et al. 1994; Iwasaki and Taura 2016; Loidl and Hammond 1995; Lopez et al. 1996;

Pehoushek and Weening 1990; Shen et al. 1999; Weening 1989], relying on assumptions such as

statically predictable time complexities, user annotations, or access to dynamic profiling data.

Subsequent work combines static annotations and dynamic profiling to provide the first provable

guarantee of low overhead and high scalability, using an approach called oracle-guided granularity

control [Acar et al. 2019, 2011, 2016a]. This approach requires the user to supply cost functions for

parallel code, which is sometimes difficult and in general not always possible.

Heartbeat scheduling. Recent work has taken a new approach based on a technique called hartbeat

scheduling [Acar et al. 2018], which in principle is both provably efficient—ensuring low overhead

and high scalability in all cases—and fully automatic—requiring no user annotation or manual

tuning. The idea is to lazily create tasks according to a regular periodic pulse, a “heartbeat”. At

every pulse, each processor spawns the oldest queued task. This approach guarantees every spawn

can be charged against work completed between heartbeats; additionally, as proven by Acar et al.

[2018], it guarantees that the critical path length of the computation is stretched by at most a

constant factor, i.e., all theoretical parallelism is asymptotically preserved.

Implementing heartbeat scheduling in practice requires a low-level preemption mechanism (such

as software polling [Basu et al. 2021; Feeley 1993b; Ghosh et al. 2020b]) to respond to heartbeats in

a timely manner, which can be challenging to incorporate automatically into compiler-generated

code without sacrificing sequential efficiency. Early implementations of heartbeat scheduling

had minimal compiler support and required significant manual rewriting to ensure efficiency in
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practice [Acar et al. 2018; Rainey 2023; Rainey et al. 2021]. Recently, Su et al. [2024] demonstrated

that heartbeat scheduling is capable of outperforming manual tuning for data-dependent and/or

irregular workloads. Their approach places some restrictions on loop bodies (e.g., they do not

support nested loops hidden behind a function call) and more generally they do not consider

higher-order functions and integration with automatic memory management and scheduling.

Our approach is most similar to automatic parallelism management [Westrick et al. 2024] which

guarantees efficiency and scalability in a high-level fork-join language. This prior work only

supports a binary fork-join model of parallelism, which is insufficient to guarantee low overheads

relative to sequential loops, a limitation which we address in this paper.

MPL. We implemented our approach in MPL (“MaPLe”), which has been exploring efficient and

scalable parallel functional programming by coupling thread scheduling and memory management

for nested fork-join parallelism [Acar et al. 2015] through disentanglement [Arora et al. 2021;

Westrick et al. 2022a, 2020] and hierarchical heaps [Guatto et al. 2018; Raghunathan et al. 2016].

MPL
sp

is the second version of MPL that employs heartbeat scheduling for automatic parallelism

management; it succeedsMPL
s
(“Sugar MaPLe”) [Westrick et al. 2024], which used a potentially

parallel function call (PCall) primitive to efficiently implement the coarse-grained par, but does not
provide primitive support for fine-grained parallel loops and reduce as we do in this paper.

Language-level support for parallelism. A variety of languages have been developed with parallel

primitives built directly into the compiler and runtime system. Examples includemultiLisp [Halstead

1984], NESL [Blelloch 1996], Cilk [Frigo et al. 1998; Schardl and Lee 2023; Schardl et al. 2017],

OpenMP [OpenMP Architecture Review Board [n. d.]], several extensions of Java [Bocchino et al.

2009; Imam and Sarkar 2014; Lea 2000], X10 [Charles et al. 2005], parallel Haskell [Li et al. 2007;

Marlow and Peyton Jones 2011; Peyton Jones et al. 2008], and several forms of parallel ML [Arora

et al. 2021, 2023; Elsman and Henriksen 2023; Fluet et al. 2011, 2007; Guatto et al. 2018; Raghunathan

et al. 2016; Sivaramakrishnan et al. 2020, 2014; Spoonhower 2009; Westrick et al. 2024, 2020].

Language-level support for parallelism often comes as structured parallel primitives like fork-join

(e.g., a binary “par”), parallel loops, futures, and async-finish, all closely related [Acar et al. 2016b].

Automatic parallelization. There has been significant research on automatic parallelization of

sequential programs. As a starting point, automatic parallelization takes a sequential program and

attempts to identify sections of the program that may be executed in parallel with a variety of

techniques such as static and dynamic analysis (e.g., [Misailovic et al. 2013; Rinard and Diniz 1996;

Rugina and Rinard 1999]) and speculation (e.g., [Prabhu and Olukotun 2005]). In contrast, we do

not attempt to automatically convert a sequential program into a parallel equivalent. Rather, the

goal of our work is to start from a “fully parallel” program—where the programmer has explicitly

specified what is often too much parallelism—and to automatically manage the existing parallelism,

coarsening where needed, and thereby avoid the need for any manual granularity control.

Automatic parallelization techniques may also need to manage parallelism [Rugina and Rinard

1999] and can benefit from our techniques. Although automatic parallelization can be effective in

certain cases, it is limited by the degree of parallelism it extracts from sequential programs, which

can severely limit opportunities for parallelism by creating long dependency chains.

7 Conclusion
We present Spork IR, an intermediate representation for parallelism management that can express

parallel loops, parallel reductions, and fork-join parallelism.

The paper formalizes the semantics of Spork IR, establishes its key soundness properties in the

Lean theorem prover and presents an implementation of the IR by extending theMPL compiler

for Parallel ML. The implementation leverages heartbeat scheduling to amortize the overheads of
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parallel task creation. Our evaluation with a broad set of benchmarks shows that our parallelism

management techniques deliver excellent performance while requiring no effort to control the

overhead of parallelism. Notably, the implementation delivers performance within 32% on average

of manually optimized benchmarks across all core counts. These results show that parallelism

management can make programs written with high-level parallelism primitives performant, thus

making progress on the long-standing challenge of bridging the benefits of high-level parallelism

abstractions with high performance.

Attribute TODO: NDSEG etc.
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A Typing Rules of Thread Pools

𝑃 ⊢ R𝑝 WFpool 𝑃 ⊢ R𝑐 WFpool prom(R𝑐 ) = ∅
root(R𝑐 ) = 𝑔spwn prom(R𝑝 ) = 𝜋 ·𝑔spwn (𝑥)

𝑃 ⊢ R𝑝 ≻ R𝑐 WFpool

𝑃 ;K ;X ⊢ 𝜌 WFdeque

𝑃 ; 𝑓 ⊢ K WFstack 𝑃 ; 𝑓 ;X; 𝜌 ⊢ 𝐶 WFcode

𝑃 ⊢ K ·⟨𝑓 , 𝜌,X⟩ ⋄𝐶 WFpool

𝑃 ;𝑔 ⊢ K WFstack 𝑃 ;K ; 𝑓 ⊢ ⟨𝑔, 𝜌,X, 𝑏ret⟩ WFframe

𝑃 ; 𝑓 ⊢ K ·⟨𝑔, 𝜌,X, 𝑏ret⟩ WFstack

𝑔 ∈ 𝑃 fun𝑟 𝑓 (_){_} ∈ 𝑃 𝑃 ;K ;X ⊢ 𝜌 WFdeque

𝑔;X; 𝜌 ⊢ 𝑏ret (·𝑟 ) WFcont

𝑃 ;K ; 𝑓 ⊢ ⟨𝑔, 𝜌,X, 𝑏ret⟩ WFframe

∀𝑔(𝑥) ∈ 𝜋 ∪ 𝜐. 𝑃 ; Γ ⊢ 𝑔(𝑥) WFcall (𝜋 = ∅ ∨ unpr(K) = ∅)
𝑃 ;K ; Γ ⊢ 𝜋 : 𝜐 WFdeque

root(R𝑝 ) = 𝑓
root(R𝑝 ≻ R𝑐 ) = 𝑓

K = ⟨𝑓 , ...⟩ ·K ′
root(K ⋄𝐶) = 𝑓

prom(R𝑝 ) = 𝜋 ·𝑔prom (𝑥)
prom(R𝑝 ≻ R𝑐 ) = 𝜋

prom(𝐾) = 𝜋
prom(K ⋄𝐶) = 𝜋

prom(K) = 𝜋 ′
prom(K ·⟨_, 𝜋 : _, _, _⟩) = 𝜋 ′ ·𝜋 prom(∅) = ∅

unpr(K) = 𝜐′
unpr(K ·⟨_, _ : 𝜐, _, _⟩) = 𝜐′ ·𝜐 unpr(∅) = ∅

Fig. 16. Rules for well-formed thread pools
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B ComparingMPL
sp’s par to MPLs

Table 4. Comparing our approach’s (MPL
sp
) automatically managed implementation of par to Westrick

et al. [2024]’s MPL
s
. For this comparison, both systems use the same code and same divide-and-conquer

implementation of reduce in order to isolate the difference in par performance. To this end, we intentially do

not use the faster reduce available toMPL
sp
.

𝑇1 Speedup 𝑇80 Speedup

Benchmark MPL
s
MPL

sp 𝑇1 (MPL
s )

𝑇1 (MPL
sp ) MPL

s
MPL

sp 𝑇80 (MPL
s )

𝑇80 (MPL
sp )

bfs 6.01 6.17 .973 .159 .154 1.03

bignum-add 1.84 1.76 1.05 .029 .027 1.06

delaunay 7.88 7.99 .987 .399 .396 1.01

grep 5.99 4.91 1.22 .093 .073 1.27

line-fit 3.41 2.60 1.31 .057 .039 1.47

mandelbrot 3.89 4.16 .936 .056 .056 .989

map-heavy 3.41 4.25 .802 .045 .055 .802

map-light 7.40 4.48 1.65 .137 .110 1.25

merge-sort 6.15 6.02 1.02 .097 .094 1.04

nearest-nbrs 1.48 1.43 1.04 .029 .028 1.03

nqueens 2.32 2.20 1.05 .033 .030 1.11

primes 14.9 7.26 2.06 .263 .153 1.72

sparse-mxv 6.62 5.87 1.13 .095 .078 1.22

suffix-array 5.27 4.29 1.23 .104 .091 1.14

triangle-count 10.2 9.90 1.03 .153 .150 1.02

word-count 2.73 2.06 1.33 .041 .028 1.50

geomean 1.14 1.15
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