
GraFeyn: Efficient Parallel Sparse Simulation of
Quantum Circuits

Sam Westrick1, Pengyu Liu1, Byeongjee Kang1, Colin McDonald1, Mike Rainey1,
Mingkuan Xu1, Jatin Arora1, Yongshan Ding2, Umut A. Acar1

1Carnegie Mellon University, USA 2Yale University, USA

Abstract—Many circuit simulators use either a Schrödinger-
based or Feynman-based approach, which have complementary
strengths. Schrödinger-based simulators maintain a state vector
by synchronously updating it after each gate (or group of
gates), ensuring time efficiency at the cost of exponential
space. In contrast, Feynman-based simulators use low space
but require high time to compute the sum of exponentially
many independent Feynman paths. Because they treat paths
as independent, Feynman-based simulators miss opportunities to
take advantage of sparsity from destructive interference.

In this paper, we present a hybrid Schrödinger-Feynman
technique which takes advantage of sparsity by selectively
synchronizing Feynman paths. Our hybrid technique partitions the
circuit into kernels (groups of gates) and uses Feynman simulation
within each kernel. It then synchronizes across the kernels by
using Schrödinger-style simulation. We parallelize our approach
by representing the simulation as a graph, leveraging state-of-
the-art parallel graph algorithms. By selecting kernels carefully,
we show that our approach can simulate hundreds of qubits
efficiently (in both time and space) on just a single multicore
node. In certain “sparse” circuits, we are able to improve running
times by multiple orders of magnitude.

Index Terms—quantum circuit simulation, Feynman paths,
parallel computing, sparsity.

I. INTRODUCTION

Quantum computing has numerous advantages over classical
computing, especially in areas such as cryptography, machine
learning, and physical sciences [1, 2, 3, 4, 5, 6, 7, 8]. Although
advances in quantum hardware is progressing relatively rapidly
with new computers coming online reasonably regularly [9, 10,
11, 12, 13], the hardware remains “noisy” [14, 15].

There is therefore continuing interest simulating quantum
circuits on classical hardware and several approaches have
been proposed, including Schrödinger- and Feynman-style
simulation. Feynman-style simulation proceeds by exploring
each and every Feynman path through the circuit, which
requires little memory (space) but can require as much time as
4m for m gates. Schrödinger-style simulation can reduce time
requirements to m2n for n qubits by maintaining the entire
quantum state in a state vector of size 2n and applying each
gate of the circuit. Schrödinger-style simulation also exposes
a large amount of parallelism that can be exploited by CPUs
and GPUs [16, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 26, 27].
Because of exponential time and space requirements, quantum
circuit simulation remains challenging, and even simulating
several dozen qubits can require supercomputers with thousands
of CPU or GPU cores.

In this paper, we propose a technique that identifies and
exploits sparsity of the state space in quantum circuits.
Specifically, we partition a quantum circuit into subcircuits,
which we call kernels, each of which is designed to minimize
density or equivalently maximize sparsity of the state vector.
We then present a hybrid Feynman-Schrödinger simulation
algorithm that uses Feynman-style for simulating each kernel
and Schrödinger-style simulations between kernels. This algo-
rithm exploits sparsity within each kernel by using Feynman-
paths based simulation, where the time complexity positively
correlates with sparsity—the sparser the kernel, the lower
the simulation time—and space complexity is minimal. By
switching to Schrödinger-style simulation between kernels,
the algorithm realizes the potential “interference” between
Feynman-paths to reify the simulation state as a state vector,
which can then be used as a starting point for the next Feynman-
style simulation.

Because our hybrid algorithm operates on a sparse state
space, and because it simulates Feynman-paths for each
basis index, it is not amenable to data parallelism. Data
parallelism works well for highly regular computations that can
be represented as operations on dense matrices, but struggles
with irregular computations, where the amount of work may
vary between the different “iterations” to be parallelized. To
parallelize our hybrid algorithm, we formulate its challenging
part—the simulation of Feynman-paths—by using a parallel
graph algorithm [28, 29, 30, 31]. By representing basis states as
vertices of a graph and the transitions between them (as induced
by the gates) as edges, our approach represents the sparsity as a
graph structure. We then use this graph to express the irregular
parallelism by using fork-join parallelism techniques. Because
of the emphasis on Feynman paths and the connection with
graph theoretic techniques, we call our simulator GraFeyn.

Our evaluation on a variety of quantum circuits shows that
GraFeyn can efficiently simulate circuits containing hundreds
of qubits. On these circuits, due to significant sparsity, GraFeyn
is multiple orders of magnitude more efficient than Schrödinger-
style simulation, in terms of both time and space (memory). We
also measure that the performance of GraFeyn is closely tied to
the sparsity of the simulation, and this performance degrades
gracefully as the average density increases. These results show
that sparsity can be exploited for significant performance gains.
We believe that, in future work, GraFeyn could be integrated
with a highly optimized dense simulator to achieve the best of
both techniques.

In summary, this paper makes the following contributions.

• GraFeyn, a hybrid Feynman-Schrödinger style algorithm
for circuit simulation that exploits sparsity for improved
performance.

• A parallel implementation of the algorithm that can use
modern multicore computers and can exploit irregular
parallelism.

• An empirical evaluation that shows that the approach
can simulate sparse circuits with hundreds of qubits on
relatively small multicore computers, delivering orders of
magnitude improvement over other simulators.

II. BACKGROUND

a) Basic definitions and notation: The state of a quantum
system with n qubits can be represented as a unit vector in
C2n , called a state vector. The basis of this space is indexed
by bitstrings of length n, with basis vectors denoted |β⟩ =
|q0q1 . . . qn−1⟩ where qi ∈ {0, 1} is the state of the ith qubit.1

We will write |β⟩ for a basis vector, and |ψ⟩ =
∑

i αi|βi⟩ for
an arbitrary state, i.e., a linear combination of basis vectors
satisfying

∑
i |αi|2 = 1. Here, αi ∈ C are complex coefficients,

called probability amplitudes, where |αi|2 is the probability of
measuring |βi⟩ when the system is measured.

b) Circuits and gates: Quantum states can undergo
unitary transformations which are commonly represented as
circuits with primitive operations called gates. Each gate
typically operates on only one or two qubits at a time, which
is understood within a larger system by the decomposition
|β⟩ = |q0q1 . . . qn−1⟩ = |q0⟩ ⊗ |q1⟩ ⊗ . . . ⊗ |qn−1⟩ where
|0⟩ = [10] and |1⟩ = [01] are basis vectors for a single qubit
system C2. A few examples of common gates include the
following.

• The quantum “not” gate, X(i), flips the ith qubit. It is
defined by the transformation [0 1

1 0].
• The controlled-not gate CX(i,j) flips the jth qubit but

only if the ith qubit is set to 1.
• The Hadamard gate H(i) applies the transformation

1√
2

[
1 1
1 −1

]
to the ith qubit.

• The phase-flip gate Z(i) which applies the transformation[
1 0
0 −1

]
to the ith qubit.

A circuit can be defined simply as a sequence of gates, to
be applied in order from left to right, for example as shown
below. Any circuit can also be pictorially represented by a
circuit diagram, where each horizontal wire is a qubit.

H(0) CX(0,1) Z(1) H(0) H(1) CX(1,0) H(1) X(1)

H

Z

H

H H X

q0

q1

1Throughout the paper we will write these bitstrings reading left-to-right,
with the 0th qubit on the left.

c) State vector (Schrödinger-based) simulation: Based on
the above definitions, it becomes clear that one could simulate
the behavior of a quantum circuit by maintaining a state vector
S and iteratively update it by applying gates in sequence
(essentially, by a large matrix-vector multiplication on every
step). This general approach is known as a Schrödinger-based
simulation. Writing down the full state vector in memory
requires storing 2n complex amplitudes, which is infeasible
even for small n. For example, the full state vector of a system
of 50 qubits would require more than a petabyte. The time
complexity of a Schrödinger-based simulation is O(m2n) for
m gates, as it requires m rounds, each with O(2n) memory
updates.

d) Feynman-based simulation: Alternatively, a quantum
circuit can be simulated by summing many independent
Feynman paths. Here, a path refers to a sequence of basis
indices of length m where m is the number of gates. The
idea is to compute the probability amplitude for all possible
paths and then perform a weighted summation to determine
the output distribution. For example, in the circuit with two
qubits and two gates (X(0),X(1)), there are 42 = 16 possible
paths, corresponding to all combinations of {|00⟩, |10⟩, |01⟩,
|11⟩} across two time-steps; in this example, exactly one of
these paths (namely, |00⟩ → |10⟩ → |11⟩, assuming an initial
state of |00⟩) has a probability amplitude of 1, while all other
paths have probability 0.

For a circuit composed of 1- and 2-qubit gates, the number
of paths can be as much as O(4m), and these paths can be
enumerated via a depth-first search through the gates, requiring
only O(m+n) memory. In contrast to Schrödinger, a Feynman-
based simulation is inefficient in terms of time. Nevertheless,
Feynman-based simulation has a number of advantages: (1) it
is highly memory efficient, (2) it is embarrassingly parallel, as
every path can be traversed independently, and (3) it can easily
take advantage of sparsity, by pruning any path of amplitude
0.

III. MOTIVATION

A. Feynman simulation is time-efficient except for interference

Interference happens when more than one path leads to
the same final state. Feynman-based simulation will track all
these paths, which might explode exponentially. As a result,
Feynman-based simulation is inefficient for general cases. On
the other hand, Schrödinger-based simulation only needs to
track the state, which is more efficient in most cases.

However, for some circuits, interference is low or non-
existent. For example, in a circuit containing only “non-
branching” gates such as CX and Rz, Feynman-based simula-
tion is just as time-efficient as Schrödinger-based simulation.
This motivates us to improve performance by utilizing Feynman-
based simulation on sub-circuits with low interference, which
we call kernels.

B. Computing interference appears to require synchronization

Computing interference during the simulation helps to reduce
the number of paths to track, which is crucial for performance.

However, computing interference requires synchronization as
we have to combine different paths to compare the final
state and compute the amplitude after interference. This
synchronization can harm parallelism, and requires a large
amount of memory, to store intermediate amplitudes.

Feynman-based simulation only synchronizes paths at the
end of the simulation. In contrast, Schrödinger-based simulation
can be viewed as synchronizing every step. This inspires us
to combine the two approaches to get the benefits of both
worlds: we use Feynman-based simulation when interference
is low, and fall back on Schrödinger-based simulation as a
synchronization mechanism to reduce the number of Feynman
paths to track.

C. Both approaches (Feynman and Schrödinger) can naturally
benefit from sparsity

Many quantum gates are sparse, meaning the corresponding
matrices are sparse. Some quantum circuits are also sparse,
meaning that the state is sparse at some points in the simulation.

Schrödinger-based simulation can benefit from sparsity by
using sparse matrix-vector multiplication, while Feynman-based
simulation can benefit from sparsity by tracking fewer paths. We
can take advantage of sparsity by using a sparse representation
of the state and pruning paths with an amplitude of zero. This
can reduce the memory usage and improve the simulation’s
performance.

D. Reordering gates can result in more sparsity

Simulation is performed by applying gates in sequence.
During simulation, there are cases where multiple gates can be
applied next, because either they commute or are all in the front
layer of the circuit. In dense Schrödinger-based simulations
(that do not attempt to take advantage of sparsity), the order
of gates does not matter. However, in our hybrid approach, the
order of gates can affect

• the sparsity of each kernel, and
• the sparsity of the state at each synchronization point.

We therefore strategically reorder gates to maximize the chance
of destructive interference and encourage this interference
to occur as early as possible, to improve the simulation’s
performance by exposing additional sparsity.

E. Overview of approach

The developments in this paper follow from the observations
above, by combining Schrödinger-based and Feynman-based
techniques to simultaneously get the benefits of both worlds
and maximize sparsity for improved performance.

At a high level, our approach is two-fold. First, we rewrite
the circuit to select kernels with low interference and expose
additional sparsity. Second, we simulate the rewritten circuit
by independently traversing Feynman paths in parallel, and
force these paths to synchronize after each kernel. Each
synchronization computes interference to reduce the number of
paths, and also prunes entries of amplitude zero and therefore
exploits sparsity for improved performance.

Our approach for interference calculation is reminiscent of
a sparse matrix-vector multiplication, and therefore is similar
to a Schödinger-style simulation. In this way, our simulator is
essentially a hybrid Schödinger-Feynman approach.

IV. KERNELIZATION

Before simulating a circuit, we first kernelize it, i.e., rewrite
the circuit into a sequence of kernels, where each kernel is
itself a smaller sequence of gates. We note that kernelization
is (in principle) similar to gate fusion [21, 25, 27, 32]: in both
cases, the goal is to improve performance by grouping together
the execution of certain gates.

In our setting, the purpose of kernelization is to delimit the
boundary between Feynman and Schrödinger-style simulation.
Within each kernel, we use a Feynman-style simulation, which
(as discussed in Section III) is time-efficient as long as there
is little inteference. To avoid interference, we group together
gates that cumulatively have a low branching factor, which
takes into account sparsity to give an upper bound on the
number of distinct Feynman paths.

At the end of each kernel, we “synchronize” the current set of
Feynman paths by aggregating these into a state vector, similar
to a Schrödinger-style simulation. This computes interference
and prevents a combinatorial explosion on the number of
Feynman paths in later kernels. Additionally, this step presents
an opportunity to expose sparsity from destructive interference,
by pruning away elements of the vector with amplitude zero.

A. Sparse gate application and branching factor

The key primitive in our simulator is a sparse gate appli-
cation, denoted APPLYGATE(g, β), which takes a single basis
vector β ∈ {0, 1}n and applies a gate to it, producing a sparse
output, where only the terms with non-zero coefficients are
kept. The output is represented as a mapping from basis vector
to probability amplitude.

APPLYGATE(g, β) ≜
{
β′ 7→ w

∣∣ ⟨β′|g|β⟩ = w,w ̸= 0
}

(where β, β′ ∈ {0, 1}n)

By keeping only the non-zero outputs, we can distinguish
between different types of gates based on how many non-zeros
these gates produce. For example, APPLYGATE(X(i), . . .) is
always a singleton; in contrast, APPLYGATE(H(i), . . .) always
produces two elements.

In general, we can define the branching factor of a gate,
denoted f(g), as the maximum number of non-zero outputs:

f(g) ≜ max
β∈{0,1}n

|R| where R = APPLYGATE(g, β).

In Figure 1 we classify gates according to their branching
factors.

For efficient simulation, an especially important class of
gates are the non-branching gates, i.e., gates with a branching
factor of 1. Many common gates—such as X, CX, etc.—are
non-branching. These gates are important because any kernel
of non-branching gates can be simulated via Feynman paths
efficiently.

Gate Description Branching Factor
X NOT 1 (non-branching)

CX controlled NOT 1 (non-branching)
S phase 1 (non-branching)
Z phase flip 1 (non-branching)
T π/8 gate 1 (non-branching)

SWAP qubit swap 1 (non-branching)
CCX Toffoli 1 (non-branching)

H Hadamard 2

Fig. 1: Branching factors of common gates

More generally, we have the following theorem, which states
that the efficiency of a Feynman-based simulation can be
bounded by the branching factors of individual gates.

Theorem 1. For any sequence of gates (g0, . . . , gm−1) and
any basis vector |β⟩ as input, the number of sparse Feynman
paths is exactly

∏
i f(gi).

Proof. We can organize the sparse Feynman paths into a rooted
tree, where each path is identified by a leaf of the tree. We have
|β⟩ at the root, and each non-leaf node of the tree corresponds
to a sparse gate application. The gates are applied in order (i.e.,
each node of the tree at depth i corresponds to an application
of gate gi), and therefore each node at depth i has exactly f(gi)
branches. The number of leaves therefore is

∏
i f(gi).

Corollary 1. For any sequence of gates (g0, . . . , gm−1) and
any initial state |ψ⟩, the number of sparse Feynman paths is at
most nz(|ψ⟩)

∏
i f(gi) where nz(|ψ⟩) is the number of basis

vectors with non-zero amplitude in |ψ⟩.

B. Kernelization algorithm

We propose a greedy kernelization strategy that produces
kernels with low branching factor. The idea is simply to select
the longest run of gates such that

∏
i f(gi) ≤ fmax, where fmax

is a constant threshold called the maximum branching factor.
This guarantees that any Feynman-style inefficiency, due to
interference, is bounded. In our experiments, we use fmax = 4.

V. GRAFEYN: PARALLEL SPARSE SIMULATION

In this section we present our simulation algorithm, called
GraFeyn. The algorithm bears close resemblence to parallel
graph traversals that have been developed by the parallel algo-
rithms community (e.g., [28, 29, 30, 31]), and in Section V-E,
we describe this connection in more detail.

GraFeyn optimizes for sparsity using dynamically resizing
hash tables. We use one hash table for each sparse state
during execution, i.e., one hash table per synchronization point
(which occurs between kernels). These hash tables are used
to accumulate the results of the Feynman paths of a kernel.
The keys of these hash tables are basis vectors β ∈ {0, 1}n,
and the associated values are complex amplitudes. We refer to
these amplitudes as weights, denoted with variables named w,
w′, etc.

procedure GRAFEYN(C, |ψ⟩)
S :=

{
β 7→ w

∣∣ ⟨β |ψ⟩ = w,w ̸= 0
}

▷ initialize sparse state
while kernels remain in C do

K := choose next kernel from C
T := {} ▷ fresh empty sparse state
if |S| < dense threshold then

for all (β 7→ w) ∈ S do in parallel
FORWARDFEYNMANKERNEL(T , β, w, K, 0)

end for
else

for all β ∈ {0, 1}n do in parallel
w := BACKWARDFEYNMANKERNEL(S, β, K, |K|)
insert (β 7→ w) into T

end for
end if
S :=

{
(β 7→ w) ∈ T

∣∣ w ̸= 0
}

▷ prune zeros
end while
return S

end procedure

procedure FORWARDFEYNMANKERNEL(T , β, w, K, i)
if i < |K| then ▷ still more gates to execute in this kernel

g := ith gate in kernel K
R := APPLYGATE(g, β) ▷ sparse application; see §IV-A
for all (β′ 7→ w′) ∈ R do in parallel

FORWARDFEYNMANKERNEL(T , β′, w ∗w′, K, i+ 1)
end for

else ▷ done executing the kernel
atomically insert (β 7→ w) into T ▷ see §V-D
(accumulate weights if β is already present)

end if
end procedure

procedure BACKWARDFEYNMANKERNEL(S, β, K, i)
if i > 0 then ▷ still more gates to execute in this kernel

g := (i− 1)th gate in kernel K
R := APPLYGATEBACKWARD(g, β)
w := ▷ parallel reduction with addition, output to w

for all (β′ 7→ w′) ∈ R reduce(+) in parallel
w′∗BACKWARDFEYNMANKERNEL(S, β′, K, i−1)

end for
return w

else ▷ done executing the kernel
return S[β]

end if
end procedure

Fig. 2: GraFeyn simulation algorithm.

An essential component of our algorithm is parallelism,
which is especially important for dense executions, but is
relevant even in highly sparse executions. For example, for
n = 30 qubits, even at 99.9% sparsity, the size of a sparse
state vector will be 0.001 · 230 ≈ 106 basis indices, and in
principle, all of these elements can be processed in parallel.
To support parallelism, our implementation uses a lock-free
hash table to ensure efficient atomic updates, and relies on a
custom resizing strategy, which we describe in more detail in
Section V-D.

A. Algorithm description

Figure 2 shows pseudocode for GraFeyn. The algorithm
takes a circuit C (represented as a sequence of kernels) and an

initial state |ψ⟩ as input, and outputs a sparse state vector S
representing the final state of the simulation. It then proceeds in
rounds, where on each round a new sparse state T is constructed
from the previous round by walking the Feynman paths of a
kernel.

Similar to the so-called “direction optimization” of Beamer
et al. [29], we use two strategies for executing a kernel: a
forward version, and a backward version. The forward version
(described below, in Section V-B) is used whenever the number
of non-zero elements of the current state vector is small.
Otherwise, when the state is large (i.e., dense), the backward
version is used (this is described in Section V-C). In both cases,
the algorithm parallelizes across basis vectors β.

At the end of each round, the algorithm updates S by pruning
away weights of value zero in T , and continues to the next
round. This proceeds until all kernels in the circuit have been
executed.

a) Note on notation: In pseodocode, we use β ∈ {0, 1}n
consistently to refer to basis vectors, and variables w to refer
to weights (i.e., complex amplitudes). For hash tables, we
use a set-like notation. The syntax (β 7→ w) denotes a single
key-value pair, and we write T [β] for a lookup of a key β.

B. Forward kernel execution

The procedure FORWARDFEYNMANKERNEL(T, β, w,K, i)
executes a kernel by walking Feynman paths starting at |β⟩ with
weight w, writing results into T . The kernel K is a sequence
of gates, and the variable i (indexed from 0) is the current
position within the kernel, i.e., the index of the next gate to
execute.

When i < |K|, the procedure applies a gate from the kernel
and continues recursively in a depth-first manner. The gate is
applied sparsely, as described in Section IV-A, and therefore
the number of recursive calls to FORWARDFEYNMANKERNEL
will be determined by the branching factor of the gate. For
example, if the gate is X which is non-branching, then there
will only be a single recursive call. All recursive calls can
proceed in parallel.

When i = |K|, the whole kernel has been executed, and T is
updated by inserting the key-value pair β 7→ w. If some other
β 7→ w′ is already present in the table (due to interference),
then the update will aggregate the results, resulting in β 7→
w+w′. This is one of the places where GraFeyn “synchronizes”
Feynman paths and computes interference.

Note that, to be safe for parallel execution, all updates into
the hash table must be performed atomically. We describe
atomic updates and other hash table details in Section V-D.

C. Backward kernel execution

When the current state S is sufficiently dense, the overhead of
hashing and concurrent aggregation for a sparse state vector can
outweigh the benefits of the sparse representation. We therefore
switch to a different strategy, where each element out of the
output is generated in parallel by “pulling” contributions from
the previous state. To implement this, we traverse Feynman
paths backwards.

The key primitive in this case is similar to the APPLYGATE
primitive of the forward direction, but with input and output
basis vectors of the gate application reversed. This primitive,
called APPLYGATEBACKWARD, is defined as follows.

APPLYGATEBACKWARD(g, β)

≜
{
β′ 7→ w

∣∣ ⟨β|g|β′⟩ = w,w ̸= 0
}

(where β, β′ ∈ {0, 1}n)

Note that backward application in this manner respects all of
the same sparsity properties of forward application, i.e., the
branching factor of a backwards gate is the same as the gate
in the forwards direction. Therefore, we can traverse Feynman
paths in exactly the same manner, but in the reverse direction.

The implementation of BACKWARDFEYNMANKERNEL is
otherwise very similar to FORWARDFEYNMANKERNEL, with
a few small differences. First, the kernel is executed in reverse,
with i = |K| initially and counting down to 0. Second, we
perform a parallel reduction over the recursive calls, which
computes the incoming interference and accumulates this into
a single output amplitude. Third and finally, when we have
completed traversing the kernel in reverse (i.e., when i = 0),
then we simply perform a lookup of the appropriate basis
vector in S, which is the sparse state vector of the previous
round. The structure of the recursive calls then propagates
these results forwards.

D. Parallel hashing and dynamic resizing

To support atomic updates and value aggregation, we use
lock-free hash tables based on open addressing. Updates are
performed with a two-step procedure. First, an appropriate hash
table slot is located (and claimed using a compare-and-swap
if the key is not already present). Then, after the slot has been
identified, we use atomic fetch-and-add primitives to update
the two components (a, b) of the complex value w = a+ bi.
This approach is correct as long as no lookups are performed
concurrently while an update is still in flight, which GraFeyn
naturally guarantees.

When performing an update, it may be the case that the
hash table is full and needs to be resized. To perform resizing,
we implement a custom procedure as follows. As soon as any
one thread detects that the hash table is full, a shared boolean
(visible to all threads) is set, and each thread periodically polls
this boolean to check if the table is full. All threads then
participate in resizing the hash table, replacing it with a table
that is a constant fraction larger. After the resizing is complete,
each thread resumes its normal execution.

Resizing occurs only in forward kernel executions. In the
backward (dense) kernel executions, the initial table size can
be chosen to be exactly 2n; in fact, our implementation avoids
using a hash table entirely in the dense case, and instead simply
fills an array in parallel.

E. Interpreting GraFeyn as a parallel graph traversal

The implementation of GraFeyn is inspired by parallel graph
traversal algorithms (e.g., [28, 29, 30, 31]) which utilize fine-
grained irregular parallelism to efficiently process sparse graphs.

Example circuit:
H

Z

H

H H X

q0

q1

|00〉 |00〉

|10〉

|00〉

|11〉

|00〉

|11〉

|00〉

|10〉

|01〉

|11〉

H(0) CX(0,1) Z(1) H(0) H(1)

|00〉

|10〉
|01〉

|11〉

|10〉

|11〉

|10〉

|11〉

|11〉

CX(1,0) H(1) X(1)
|00〉

|10〉

|01〉

|11〉

|00〉

|10〉

|01〉

|11〉
|11〉

|10〉 |11〉

|10〉
|10〉

|11〉

|10〉

(sync) (sync)Kernel 1 Kernel 2

input

output

w() = 2-1/2

w() = -2-1/2
w() = 2-1

w() = -2-1 w() = -2-3/2
w() = 2-3/2

w() = 1
edge weights

Fig. 3: Illustrating the execution of GraFeyn as a graph traversal, with vertices corresponding to basis vectors and edges
corresponding to non-zero (complex) weights. We show a simulation of an example circuit on two qubits assuming an initial
state |ψ⟩ = |00⟩. The simulation consists of two kernels (forward execution only), and two corresponding synchronization
points.

To make this connection more clear, we can interpret the
execution of GraFeyn as a graph traversal of a particular graph
which is generated “on-the-fly.”

We present an example in Figure 3, which illustrates the
execution of GraFeyn on an example circuit of two qubits,
assuming an input of |00⟩. Here, we consider only the
“forward” kernel executions of GraFeyn. In the figure, each
vertex corresponds to either a sparse gate application or a
synchronization point, and each edge corresponds to a non-
zero weight. The edges are drawn with different colors and
dashing according to the associated weights.

In the figure, we label each vertex with a basis vector
and organize these vertices into columns, where each column
can be understood as a state vector. GraFeyn only computes
state vectors at explicit synchronization points, immediately
after each kernel. The example shows two kernels, and two
corresponding synchronization points. At each synchronization,
GraFeyn computes interference, deduplicates basis vectors,
and prunes weights of value zero. Within each kernel, sparse
Feynman paths are traversed independently.

Based on this graph-based interpretation of GraFeyn, we note
that the interference calculations (i.e., synchronization points)
of GraFeyn are inspired by—and similar in implementation
to—the EDGEMAP primitives of Shun and Blelloch [28]
and Dhulipala et al. [31]. These primitives utilize Beamer
et al. [29]’s “direction optimization”, which is similar to our
distinction between forwards and backwards kernels.

F. Gate scheduling

As stated thus far, our approach takes a sequence of gates,
kernelizes this sequence (Section IV), and then applies the
GraFeyn algorithm to the resulting sequence of kernels. An
immediate question, however, is whether or not the initial
ordering of gates (before kernelization) affects performance.

We have found that this input ordering can have a significant
impact on sparsity, and to control for this, we propose a greedy
gate scheduler which reorders the initial gate sequence to
encourage additional sparsity.

The high-level idea of our gate scheduler is to pick a qubit,
execute all gates on that qubit, and then pick another qubit
and repeat until all gates have been executed. To execute a
gate, however, all of its dependencies must first be executed.
Therefore, at each step, our scheduler first executes the fewest
number of other gates as possible to make progress towards
picking the next desired gate on the chosen qubit.

VI. IMPLEMENTATION AND EVALUATION

We implemented our techniques using the MPL [33] pro-
gramming language. All code and experiment scripts are
available open-source at https://github.com/CMU-TOP/grafeyn.
Our implementation is highly parallel and closely follows the
algorithm as described in Section V, but is otherwise largely
unoptimized. Nevertheless, in this section, we show that our
approach is able to outperform existing simulators, including
Qiskit [21] and QSim [34], in some cases by multiple orders
of magnitude. We also show that our techniques are capable
of simulating certain “sparse” circuits on hundreds of qubits.

a) Experimental setup and benchmarks: We run our
experiments on a 64-core AWS r6i.32xlarge instance,
which has 2×2.9GHz Intel Xeon (32-core) 8375C CPUs
and 1TB of memory. All reported numbers use 128 threads
(hyper-threaded). We compile our implementation with MPL
version 0.4, and compare against Qiskit version 0.39.5 (with
qiskit-terra version 0.22.4 and qiskit-aer version
0.11.2) and QSim version 0.16.3. We use a variety of bench-
marks from QASMBench [35] and MQTBench [36], selected
to cover multiple families and sizes of quantum algorithms. We
run each benchmark at least 10 times, and report averages for

https://github.com/CMU-TOP/grafeyn

Benchmark Relative Density Non-zeros GraFeyn Absolute Qiskit Absolute Qiskit Relative QSim Absolute QSim Relative
Qubits Gates Avg Max Max Time Mem Time Mem Time Mem Time Mem Time Mem

adder 28 88 <0.1% <0.1% 1 0.0001 0.0195 1.91 4.30 19100 221 1.15 4.35 11500 223
433 1393 <0.1% <0.1% 1 0.0087 0.0341 – – – – – – – –

multiplier 45 689 <0.1% <0.1% 1 0.0011 0.0266 – – – – – – – –
400 57237 <0.1% <0.1% 1 0.401 0.617 – – – – – – – –

bv
30 78 <0.1% <0.1% 4 0.0010 0.0195 2.79 16.9 2790 867 4.56 16.9 4560 867
70 176 <0.1% <0.1% 4 0.0163 0.0223 – – – – – – – –
280 712 <0.1% <0.1% 4 0.181 0.0327 – – – – – – – –

cat 35 35 <0.1% <0.1% 2 0.0001 0.0191 – – – – – – – –
260 260 <0.1% <0.1% 2 0.0012 0.0222 – – – – – – – –

ghz 40 40 <0.1% <0.1% 2 0.0001 0.0191 – – – – – – – –
255 255 <0.1% <0.1% 2 0.0013 0.0221 – – – – – – – –

dj indep
30 88 <0.1% <0.1% 60 0.0030 0.0206 4.20 16.9 1400 820 5.18 16.9 1727 820
62 184 <0.1% <0.1% 128 0.0099 0.0243 – – – – – – – –
130 388 <0.1% <0.1% 240 2.20 0.106 – – – – – – – –

qram 20 27 <0.1% <0.1% 1 0.0001 0.0190 0.0087 0.107 87.0 5.63 0.0102 0.168 102 8.84
knn 31 47 3.3% 36.7% 787991531 9.63 54.0 10.3 33.6 1.07 0.62 7.45 33.7 0.77 0.62
qft 29 2059 10.4% 100.0% 536870912 4.28 16.6 9.78 8.50 2.29 0.51 15.2 8.55 3.55 0.52

ising 26 280 14.6% 100.0% 67108864 2.30 3.35 0.249 1.16 0.11 0.35 0.274 1.19 0.12 0.36
34 368 11.3% 100.0% 17179869184 638 652 76.7 268 0.12 0.41 – – – –

dnn 33 874 13.2% 100.0% 8589331981 824 261 61.1 134 0.07 0.51 – – – –

TABLE I: Experimental data of our GraFeyn simulator, and comparison with Qiskit and QSim. Absolute memory is measured
in GB and time in seconds. Relative memory and times are computed with respect to GraFeyn; higher is better for GraFeyn.
The relative density is the number of non-zero entries relative to 2n. Cells marked “–” indicate either a crash or out-of-memory.

both time and space measurements. Space (peak memory usage)
is measured as the maximum resident set size, as reported by
Linux.

A. Results

The results of our evaluation are presented in Figure I. Each
row corresponds to a benchmark instance, and the columns
include some properties of the benchmark, the results of our
GraFeyn simulator, and the results of Qiskit and QSim. The key
metrics are the time taken to simulate the circuit and the peak
memory usage, which we report both the absolute and relative
values compared to GraFeyn. Absolute memory is measured in
GB and time in seconds. For the relative value, higher is better
for GraFeyn. We also report the state vector’s average and
maximum relative density, which is the ratio of the number of
non-zero amplitudes to the total number of amplitudes. Cells
marked “–” indicate that the simulator consistently ran out of
memory or crashed.

a) Many quantum circuits have significant sparsity: We
observe that across many different families of quantum circuits,
there is significant sparsity that can be exploited for improved
performance. In particular, our results show that the following
benchmark families are almost entirely sparse: adder, multiplier,
bv, cat, ghz, and qram. In these benchmark families, on up
to hundreds of qubits, GraFeyn requires only a handful of
non-zero amplitudes and completes in a short amount of time.
Running times for these families are less than a second across
the board, and less than 1/10th of a second in 10 out of 12
instances. Other benchmark families are also highly sparse,
such as dj indep, where the number of non-zero amplitudes
appears to scale only linearly with the number of qubits (as
opposed to exponentially).

For other benchmark families, like qft, ising, and dnn, the
maximum relative density is 100%, meaning that we still need
O(2n) memory to store the state vector. However, since the

relative average density is significantly less than 100%, sparse
simulation can save computation and time.

b) GraFeyn scales to hundreds of qubits on sparse circuits:
We observe that GraFeyn efficiently handles hundreds of qubits
for circuits that are highly sparse. On the adder benchmark in
particular, GraFeyn simulates 433 qubits and 1393 gates in less
than 1/10th of a second and only 34MB of space. Similarly,
the bv benchmark with 280 qubits and 712 gates completes
in less than 0.2 seconds using only 33MB. In contrast, Qiskit
and QSim run out of memory for these benchmarks.

In instances of sparse circuits where the number of qubits is
small enough to simulate with QSim and Qiskit, we observe that
GraFeyn is multiple orders of magnitude more efficient than
both QSim and Qiskit in terms of space and time. For example,
on the bv circuit with 30 qubits, GraFeyn is approximately
2800× faster than Qiskit and uses 870× less memory; the
results in comparison to QSim are similar. On the adder circuit
with 28 qubits, GraFeyn is nearly 20000× faster than Qiskit.

c) GraFeyn’s performance improves with sparsity: We
observe that GraFeyn’s performance improves with the amount
of sparsity in the circuit simulation, and this improvement
scales linearly with the amount of sparsity. In Figure 4, we
compare the average time per gate vs the average number of
non-zero amplitudes for a few benchmark instances, and see a
linear relationship between them. This is because the actual
computation required is proportional to the number of non-zero
amplitudes, which determines the time per gate. Although there
are only a few data points, we compute a linear regression and
see a slope of 9.00× 10−10, which means that our simulator
can simulate 1.1 × 109 amplitude-gate pairs per second on
average.

For circuits that are sufficiently dense, GraFeyn is outper-
formed by both Qiskit and QSim. For example, GraFeyn is
approximately 10x slower than Qiskit on both ising circuits,
and uses approximately 3x as much memory. The reason is that

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Average non-zero amplitudes 1e9

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Ti

m
e

pe
r g

at
e

(s
)

knn_n31
qft_n29
ising_n34
dnn_n33
ising_n26

Fig. 4: Average non-zero amplitudes vs. time per gate for
Grafeyn. The red line is the linear regression.

GraFeyn currently does not execute dense kernels efficiently.
We believe that, in future work, the dense rounds of GraFeyn
could instead use an efficient Schrödinger-based technique,
and this would improve the performance of GraFeyn on dense
circuits.

VII. RELATED WORK

a) Parallel quantum circuit simulation: Several recent
works have tried to accelerate Schrödinger-based quantum
circuit simulation with data-parallelism [19, 26, 27, 37, 38, 39,
40, 41, 42, 43, 44]. Previous work shows that efficient parallel
simulation using a sparse representation of the quantum state
is challenging because the hash map used for the state is not
thread-safe for concurrent update operations [45]. In our work,
we leverage an efficient lock-free concurrent hash table to
perform fine-grained parallel updates to sparse states.

b) Quantum gate fusion and scheduling: Prior work has
used gate fusion techniques to accelerate quantum circuit
simulation and reduce overhead [21, 25, 27, 32, 44]. In our
work, we notice that it is possible to kernelize for sparsity and
exploit the sparsity to dramatically improve the efficiency of
simulation.

For Schrödinger-based simulators that do not exploit sparsity,
the simulation ordering of gates has no significant impact
on performance. But for sparse simulations, previous work
has observed that the order of simulation has a significant
impact on performance [45]. Our work proposes a greedy
scheduling algorithm to optimize the simulation order for sparse
simulation.

c) Hybrid Schrödinger-Feynman simulation: There have
been existing works that use ideas from both Schrödinger-
based and Feynman-based approaches [46, 47], but they scale
up to only 45 qubits (or 56 qubits for weak simulation). Our
approach is more systematic and is able to simulate hundreds
of qubits efficiently.

d) Structured quantum circuit simulators: It is widely
believed that quantum circuits are difficult to simulate in
general [48]. However, it is still possible to exploit special
structures of quantum circuits to realize efficient simulation.
Our work exploits the sparsity of quantum circuits while there
are other works that focus on different structures.

Circuits with low entanglement can be efficiently simulated
by matrix product states and tensor networks [21, 49, 50, 51].
Clifford circuits with no or few T gates can also be efficiently
simulated [52]. There are also efficient simulators for Clifford
circuits with errors [53, 54]. Quantum circuits that result in
compressible states can be accelerated by decision diagrams [55,
56] or classical compression techniques [39, 57]. There are
also works that focus on the simulation of specific classes
of quantum circuits such as quantum Fourier transformation,
special implementations of Shor’s algorithm, or many-body
quantum systems [45, 58, 59].

e) Parallel graph algorithms: In this paper, we use
irregular parallel graph algorithms [30, 31] to parallelize
Feynman-paths based simulation of quantum circuits. These
algorithms differ from those used in state-vector simulations
because they can parallelize sparse state vectors and the
resulting irregularity of parallel computations. The algorithms
express parallelism by using fork-join parallelism (e.g., parallel
for-loops and reductions which can be recursively nested),
with no limitations on the irregularity between iterations. This
approach to irregular parallelism has proved effective over the
past decade in a variety of languages and systems, e.g., C [60],
Java [61], X10 [62], and Parallel ML [63, 64, 65, 66].

VIII. CONCLUSION

The goal of this paper is not to develop the fastest simulator,
but rather to demonstrate that Feynman paths can be used to
efficiently execute “sparse” circuits, with multiple order-of-
magnitude improvements in time and space consumption. To
this end, we develop GraFeyn, a hybrid Feynman-Schrödinger
quantum simulator which takes advantage of sparsity by
incorporating a parallel Feynman-style simulation technique.
Our experiments show that (1) sparsity is common across a
range of quantum circuits, and (2) if the execution of a circuit
is sufficiently sparse, then the number of qubits in the circuit
is largely inconsequential. In particular, we show that GraFeyn
can simulate certain “sparse” circuits with hundreds of qubits
in less than a second.

Looking forward, we believe it is possible to integrate
GraFeyn with existing state-of-the-art dense simulation tech-
niques, to take advantage of sparsity when it is present but
otherwise fall back on a more efficient approach whenever
density is sufficiently high. We plan to explore this approach
in future work.

ACKNOWLEDGMENTS

This research was supported by the NSF under the
grants CCF-1901381, CCF-2115104, CCF-2119352, and CCF-
2107241.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, “Quantum informa-
tion and quantum computation,” Cambridge: Cambridge
University Press, vol. 2, no. 8, p. 23, 2000.

[2] C. H. Bennett and G. Brassard, “Quantum cryptography:
Public key distribution and coin tossing,” arXiv preprint
arXiv:2003.06557, 2020.

[3] M. Schuld and N. Killoran, “Quantum machine learning
in feature hilbert spaces,” Physical review letters, vol.
122, no. 4, p. 040504, 2019.

[4] R. Orús, S. Mugel, and E. Lizaso, “Quantum computing
for finance: Overview and prospects,” Reviews in Physics,
vol. 4, p. 100028, 2019.

[5] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,
N. Wiebe, and S. Lloyd, “Quantum machine learning,”
Nature, vol. 549, no. 7671, pp. 195–202, 2017.

[6] R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik,
and N. Wiebe, “Chemical basis of trotter-suzuki errors
in quantum chemistry simulation,” Physical Review A,
vol. 91, no. 2, p. 022311, 2015.

[7] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum
algorithms for supervised and unsupervised machine
learning,” arXiv preprint arXiv:1307.0411, 2013.

[8] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-
Gordon, “Simulated quantum computation of molecular
energies,” Science, vol. 309, no. 5741, pp. 1704–1707,
2005.

[9] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A.
Buell et al., “Quantum supremacy using a programmable
superconducting processor,” Nature, vol. 574, no. 7779,
pp. 505–510, 2019.

[10] G. Q. A. lab, “A preview of bristlecone, google’s new
quantum processor,” https://ai.googleblog.com/2018/03/
a-preview-of-bristlecone-googles-new.html, 2018.

[11] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-
C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu
et al., “Quantum computational advantage using photons,”
Science, vol. 370, no. 6523, pp. 1460–1463, 2020.

[12] C. Q. Choi, “Ibm unveils 433-qubit osprey chip,”
Mar 2023. [Online]. Available: https://spectrum.ieee.org/
ibm-quantum-computer-osprey

[13] D. Castelvecchi, “Ibm releases first-ever 1,000-qubit
quantum chip,” Dec 2023. [Online]. Available: https:
//www.nature.com/articles/d41586-023-03854-1

[14] J. Preskill, “Quantum computing in the NISQ era and
beyond,” Quantum, vol. 2, p. 79, aug 2018. [Online].
Available: https://doi.org/10.22331%2Fq-2018-08-06-79

[15] A. D. Corcoles, A. Kandala, A. Javadi-Abhari,
D. T. McClure, A. W. Cross, K. Temme, P. D.
Nation, M. Steffen, and J. M. Gambetta, “Challenges
and opportunities of near-term quantum computing
systems,” Proceedings of the IEEE, vol. 108, no. 8,
pp. 1338–1352, aug 2020. [Online]. Available: https:
//doi.org/10.1109%2Fjproc.2019.2954005

[16] A. Amariutei and S. Caraiman, “Parallel quantum com-
puter simulation on the gpu,” in 15th International
Conference on System Theory, Control and Computing.
IEEE, 2011, pp. 1–6.

[17] A. Avila, A. Maron, R. Reiser, M. Pilla, and A. Yamin,
“Gpu-aware distributed quantum simulation,” in Proceed-
ings of the 29th Annual ACM symposium on applied
computing, 2014, pp. 860–865.

[18] A. Avila, R. H. Reiser, M. L. Pilla, and A. C. Yamin,
“Optimizing d-gm quantum computing by exploring
parallel and distributed quantum simulations under gpus
arquitecture,” in 2016 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2016, pp. 5146–5153.

[19] M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik,
“qhipster: The quantum high performance software testing
environment,” arXiv preprint arXiv:1601.07195, 2016.

[20] T. Häner and D. S. Steiger, “0.5 petabyte simulation
of a 45-qubit quantum circuit,” in Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC
’17. New York, NY, USA: Association for Computing
Machinery, Nov. 2017, pp. 1–10. [Online]. Available:
https://doi.org/10.1145/3126908.3126947

[21] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello,
Y. Ben-Haim, D. Bucher, F. J. Cabrera-Hernández,
J. Carballo-Franquis, A. Chen, C.-F. Chen et al., “Qiskit:
An open-source framework for quantum computing,”
Accessed on: Mar, vol. 16, 2019.

[22] E. Gutiérrez, S. Romero, M. A. Trenas, and E. L.
Zapata, “Quantum computer simulation using the cuda
programming model,” Computer Physics Communications,
vol. 181, no. 2, pp. 283–300, 2010.

[23] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “Quest
and high performance simulation of quantum computers,”
Scientific reports, vol. 9, no. 1, pp. 1–11, 2019.

[24] P. Zhang, J. Yuan, and X. Lu, “Quantum computer
simulation on multi-gpu incorporating data locality,” in
Algorithms and Architectures for Parallel Processing:
15th International Conference, ICA3PP 2015, Zhangjiajie,
China, November 18-20, 2015, Proceedings, Part I 15.
Springer, 2015, pp. 241–256.

[25] Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga,
M. Nakadai, J. Chen, K. M. Nakanishi, K. Mitarai,
R. Imai, S. Tamiya et al., “Qulacs: a fast and versatile
quantum circuit simulator for research purpose,” Quantum,
vol. 5, p. 559, 2021.

[26] D. Park, H. Kim, J. Kim, T. Kim, and J. Lee,
“SnuQS: scaling quantum circuit simulation using
storage devices,” in Proceedings of the 36th ACM
International Conference on Supercomputing, ser. ICS
’22. New York, NY, USA: Association for Computing
Machinery, Jun. 2022, pp. 1–13. [Online]. Available:
https://dl.acm.org/doi/10.1145/3524059.3532375

[27] C. Zhang, Z. Song, H. Wang, K. Rong, and J. Zhai,
“Hyquas: Hybrid partitioner based quantum circuit
simulation system on gpu,” in Proceedings of the ACM

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://spectrum.ieee.org/ibm-quantum-computer-osprey
https://spectrum.ieee.org/ibm-quantum-computer-osprey
https://www.nature.com/articles/d41586-023-03854-1
https://www.nature.com/articles/d41586-023-03854-1
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.1109%2Fjproc.2019.2954005
https://doi.org/10.1109%2Fjproc.2019.2954005
https://doi.org/10.1145/3126908.3126947
https://dl.acm.org/doi/10.1145/3524059.3532375

International Conference on Supercomputing, ser. ICS
’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 443–454. [Online]. Available:
https://doi.org/10.1145/3447818.3460357

[28] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph
processing framework for shared memory,” in PPOPP

’13. New York, NY, USA: ACM, 2013, pp. 135–146.
[29] S. Beamer, K. Asanović, and D. Patterson, “Direction-

optimizing breadth-first search,” in SC ’12, 2012, pp.
12:1–12:10.

[30] U. A. Acar and G. E. Blelloch, Algorithms: Parallel and
Sequential, 2022, http:www.algorithms-book.com.

[31] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically
efficient parallel graph algorithms can be fast and
scalable,” ACM Trans. Parallel Comput., vol. 8,
no. 1, pp. 4:1–4:70, 2021. [Online]. Available: https:
//doi.org/10.1145/3434393

[32] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto,
A. Pérez-Salinas, D. Garcı́a-Martı́n, A. Garcı́a-Sáez,
J. I. Latorre, and S. Carrazza, “Qibo: a framework
for quantum simulation with hardware acceleration,”
CoRR, vol. abs/2009.01845, 2020. [Online]. Available:
https://arxiv.org/abs/2009.01845

[33] U. A. Acar, J. Arora, M. Fluet, R. Raghunathan,
S. Westrick, and R. Yadav, “Mpl: A high-performance
compiler for parallel ml,” 2020, https://github.com/
MPLLang/mpl.

[34] Q. A. team and collaborators, “qsim,” Sep. 2020. [Online].
Available: https://doi.org/10.5281/zenodo.4023103

[35] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “Qasm-
bench: A low-level qasm benchmark suite for nisq evalu-
ation and simulation,” arXiv preprint arXiv:2005.13018,
2021.

[36] N. Quetschlich, L. Burgholzer, and R. Wille, “MQT
Bench: Benchmarking software and design automation
tools for quantum computing,” 2022, MQT Bench is
available at https://www.cda.cit.tum.de/mqtbench/.

[37] A. Zulehner and R. Wille, “Advanced simulation of
quantum computations,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 848–859, 2018.

[38] Z.-Y. Chen, Q. Zhou, C. Xue, X. Yang, G.-C. Guo, and
G.-P. Guo, “64-qubit quantum circuit simulation,” Science
Bulletin, vol. 63, no. 15, pp. 964–971, 2018.

[39] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel,
Y. Alexeev, and F. T. Chong, “Full-state quantum circuit
simulation by using data compression,” in Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp.
1–24.

[40] J. Doi, H. Takahashi, R. Raymond, T. Imamichi,
and H. Horii, “Quantum computing simulator on a
heterogenous HPC system,” in Proceedings of the 16th
ACM International Conference on Computing Frontiers,
CF 2019, Alghero, Italy, April 30 - May 2, 2019,
F. Palumbo, M. Becchi, M. Schulz, and K. Sato,

Eds. ACM, 2019, pp. 85–93. [Online]. Available:
https://doi.org/10.1145/3310273.3323053

[41] A. Fatima and I. L. Markov, “Faster schrödinger-style
simulation of quantum circuits,” in IEEE International
Symposium on High-Performance Computer Architecture,
HPCA 2021, Seoul, South Korea, February 27 - March 3,
2021. IEEE, 2021, pp. 194–207. [Online]. Available:
https://doi.org/10.1109/HPCA51647.2021.00026

[42] Y. Zhao, Y. Chen, H. Li, Y. Wang, K. Chang, B. Wang,
B. Li, and Y. Han, “Full state quantum circuit simulation
beyond memory limit,” in 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD). IEEE,
2023, pp. 1–9.

[43] C. Zhang, H. Wang, Z. Ma, L. Xie, Z. Song, and J. Zhai,
“UniQ: A unified programming model for efficient quan-
tum circuit simulation,” in SC22: International Conference
for High Performance Computing, Networking, Storage
and Analysis, 2022, pp. 1–16, ISSN: 2167-4337.

[44] M. Xu, S. Cao, X. Miao, U. A. Acar, and Z. Jia, “Atlas:
Hierarchical partitioning for quantum circuit simulation
on gpus,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, 2024.

[45] S. Jaques and T. Häner, “Leveraging state sparsity for
more efficient quantum simulations,” ACM Transactions
on Quantum Computing, vol. 3, no. 3, jun 2022. [Online].
Available: https://doi.org/10.1145/3491248

[46] I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo,
“Massively parallel approximate simulation of hard
quantum circuits,” in 57th ACM/IEEE Design Automation
Conference, DAC 2020, San Francisco, CA, USA, July
20-24, 2020. IEEE, 2020, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/DAC18072.2020.9218591

[47] L. Burgholzer, H. Bauer, and R. Wille, “Hybrid
schrödinger-feynman simulation of quantum circuits with
decision diagrams,” in IEEE International Conference
on Quantum Computing and Engineering, QCE 2021,
Broomfield, CO, USA, October 17-22, 2021, H. A.
Müller, G. Byrd, C. Culhane, and T. S. Humble,
Eds. IEEE, 2021, pp. 199–206. [Online]. Available:
https://doi.org/10.1109/QCE52317.2021.00037

[48] R. Movassagh, “The hardness of random quantum circuits,”
Nature Physics, vol. 19, no. 11, pp. 1719–1724, 2023.

[49] S.-X. Zhang, J. Allcock, Z.-Q. Wan, S. Liu, J. Sun, H. Yu,
X.-H. Yang, J. Qiu, Z. Ye, Y.-Q. Chen, C.-K. Lee, Y.-C.
Zheng, S.-K. Jian, H. Yao, C.-Y. Hsieh, and S. Zhang,
“TensorCircuit: a Quantum Software Framework for the
NISQ Era,” Quantum, vol. 7, p. 912, Feb. 2023. [Online].
Available: https://doi.org/10.22331/q-2023-02-02-912

[50] R. Jozsa and N. Linden, “On the role of entanglement
in quantum-computational speed-up,” Proceedings of
the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, vol. 459, no. 2036,
pp. 2011–2032, aug 2003.

[51] I. L. Markov and Y. Shi, “Simulating quantum computa-
tion by contracting tensor networks,” SIAM Journal on

https://doi.org/10.1145/3447818.3460357
http:www.algorithms-book.com
https://doi.org/10.1145/3434393
https://doi.org/10.1145/3434393
https://arxiv.org/abs/2009.01845
https://github.com/MPLLang/mpl
https://github.com/MPLLang/mpl
https://doi.org/10.5281/zenodo.4023103
https://www.cda.cit.tum.de/mqtbench/
https://doi.org/10.1145/3310273.3323053
https://doi.org/10.1109/HPCA51647.2021.00026
https://doi.org/10.1145/3491248
https://doi.org/10.1109/DAC18072.2020.9218591
https://doi.org/10.1109/QCE52317.2021.00037
https://doi.org/10.22331/q-2023-02-02-912

Computing, vol. 38, no. 3, pp. 963–981, 2008.
[52] K. N. Smith, M. A. Perlin, P. Gokhale, P. Frederick,

D. Owusu-Antwi, R. Rines, V. Omole, and F. Chong,
“Clifford-based circuit cutting for quantum simulation,”
in Proceedings of the 50th Annual International
Symposium on Computer Architecture, ser. ISCA ’23.
New York, NY, USA: Association for Computing
Machinery, 2023. [Online]. Available: https://doi.org/10.
1145/3579371.3589352

[53] C. Gidney, “Stim: a fast stabilizer circuit simulator,”
Quantum, vol. 5, p. 497, Jul. 2021. [Online]. Available:
https://doi.org/10.22331/q-2021-07-06-497

[54] R. S. Bennink, E. M. Ferragut, T. S. Humble, J. A. Laska,
J. J. Nutaro, M. G. Pleszkoch, and R. C. Pooser, “Unbiased
simulation of near-clifford quantum circuits,” Phys. Rev.
A, vol. 95, p. 062337, Jun 2017. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.95.062337

[55] S. Li, Y. Kimura, H. Sato, and M. Fujita, “Parallelizing
quantum simulation with decision diagrams,” IEEE Trans-
actions on Quantum Engineering, vol. 5, no. 01, pp. 1–12,
jan 2024.

[56] A. Zulehner, S. Hillmich, and R. Wille, “How to efficiently
handle complex values? implementing decision diagrams
for quantum computing,” in 2019 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD),
2019, pp. 1–7.

[57] Y. Zhao, Y. Guo, Y. Yao, A. Dumi, D. M. Mulvey,
S. Upadhyay, Y. Zhang, K. D. Jordan, J. Yang, and
X. Tang, “Q-gpu: A recipe of optimizations for quantum
circuit simulation using gpus,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2022, pp. 726–740.

[58] D. Aharonov, Z. Landau, and J. Makowsky, “The quantum

fft can be classically simulated,” arXiv preprint quant-
ph/0611156, 2006.

[59] J. Richter, “Simulating the dynamics of large many-body
quantum systems with schrödinger-feynman techniques,”
arXiv preprint arXiv:2403.19864, 2024.

[60] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou, “Cilk: an efficient
multithreaded runtime system,” in ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming
(PPOPP), 1995, pp. 207–216.

[61] D. Lea, “A Java fork/join framework,” in Proceedings of
the ACM 2000 conference on Java Grande, ser. JAVA
’00, 2000, pp. 36–43.

[62] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an
object-oriented approach to non-uniform cluster comput-
ing,” in Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, ser. OOPSLA ’05. ACM,
2005, pp. 519–538.

[63] M. Fluet, M. Rainey, J. H. Reppy, and A. Shaw,
“Implicitly-threaded parallelism in Manticore,” in ICFP,
2008, pp. 119–130.

[64] M. Fluet, M. Rainey, J. Reppy, and A. Shaw, “Implicitly
threaded parallelism in Manticore,” Journal of Functional
Programming, vol. 20, no. 5-6, pp. 1–40, 2011.

[65] J. Arora, S. Westrick, and U. A. Acar, “Provably space
efficient parallel functional programming,” in Proceedings
of the 48th Annual ACM Symposium on Principles of
Programming Languages (POPL), 2021.

[66] ——, “Efficient parallel functional programming with
effects,” Proc. ACM Program. Lang., vol. 7, no.
PLDI, pp. 1558–1583, 2023. [Online]. Available:
https://doi.org/10.1145/3591284

https://doi.org/10.1145/3579371.3589352
https://doi.org/10.1145/3579371.3589352
https://doi.org/10.22331/q-2021-07-06-497
https://link.aps.org/doi/10.1103/PhysRevA.95.062337
https://doi.org/10.1145/3591284

	Introduction
	Background
	Motivation
	Feynman simulation is time-efficient except for interference
	Computing interference appears to require synchronization
	Both approaches (Feynman and Schrödinger) can naturally benefit from sparsity
	Reordering gates can result in more sparsity
	Overview of approach

	Kernelization
	Sparse gate application and branching factor
	Kernelization algorithm

	GraFeyn: Parallel Sparse Simulation
	Algorithm description
	Forward kernel execution
	Backward kernel execution
	Parallel hashing and dynamic resizing
	Interpreting GraFeyn as a parallel graph traversal
	Gate scheduling

	Implementation and Evaluation
	Results

	Related Work
	Conclusion

